Par Benaamer BOUNICHANE

Vers une Méthodologie d'Analyse des Etats de Surfaces en Science des Matériaux : de la Caractérisation à la Recherche de Paramètres Pertinents

Thèse présentée pour l'obtention du grade de Docteur de l’UTC.

Soutenue le : 3 décembre 2009
Champ disciplinaire : Mécanique Avancée
VERS UNE METHODOLOGIE D'ANALYSE DES ETATS DE SURFACES EN SCIENCE DES MATÉRIAUX : DE LA CARACTÉRISATION À LA RECHERCHE DE PARAMÈTRES PERTINENTS

Soutenue le 3 décembre 2009 devant le jury composé de :

MME S. BOUVIER (Président)
MM. M. BIGERELLE (Directeur de thèse)
H. ZAHOUANI (Directeur de thèse)
MME K. ANSELME (Rapporteur)
MM. G. GUILLEMOT
F. HENNEBELLE
A. IOST (Rapporteur)
Remerciements

Ce travail de thèse a été réalisé au sein de l'équipe de recherche en mécanique, acoustique et matériaux du Laboratoire Roberval de l'Université de Technologie de Compiègne.

Tout d'abord je tiens à remercier chaleureusement le Professeur Maxence BIGERELLE, mon directeur de thèse, pour m'avoir accueilli dans son équipe. Je lui suis particulièrement reconnaissant de m'avoir inculqué les prémisses de la recherche scientifique. Son exigence, sa rigueur, ses critiques, ses idées toujours novatrices et sa disponibilité sont pour beaucoup dans ce travail.

Je tiens à remercier Gildas GUILLEMOT pour son encadrement de haut niveau, et tout ce qu'il m'a apporté scientifiquement. Je remercie également Le Professeur Hassan ZAHOUANI pour avoir été le co-directeur de la thèse, et avec qui j'ai eu, des discussions enrichissantes.

Je tiens à remercier les rapporteurs de ma thèse, Monsieur Alain IOST et Madame Karine ANSELME pour avoir accepté la charge de juger ce travail de thèse et je remercie vivement Madame Salima BOUVIER et Monsieur François HENNEBELLE qui me font l'honneur de participer à ce jury de thèse.

Je remercie aussi la fondation Cetim (Centres Technique des Industries Mécaniques) basée à Senlis pour le financement de cette thèse dans le cadre du projet « Nouvelles méthodes d'analyse des états de surfaces : de la caractérisation à la recherche de paramètres pertinents ».

J'adresse mes remerciements à l'ensemble des membres du laboratoire Roberval qui ont rendu ces années de thèse très agréables.

De plus je souhaite vivement remercier ma famille et ma belle famille pour leur affection et soutien constants.

Enfin, tout mon amour à Audrey, ma chérie, pour m'avoir supporté et encouragé pendant les moments difficiles, pour avoir été toujours présente à mes cotés, et tout simplement pour l'amour qu'elle m'apporte au jour le jour et de m'avoir donné un si joli garçon dont je suis fier.
Table des matières

Remerciements ... 3
Table des matières .. 5
Introduction .. 9

I. Chapitre I : Nouveau système d'analyse des états de surfaces 13
 I.1.Outils de caractérisation statistique .. 14
 I.2.Construction d'une méthode .. 15
 I.3.Les aspects informatiques ... 17
 I.3.1.Les logiciels existants .. 18
 I.3.2.Présentation du projet MesRug ... 20
 I.4.Structuration d'une étude de rugosité et système de gestion de base de données 22
 I.4.1.La base de données .. 22
 I.4.2.Le système de gestion de base de données .. 23
 I.4.3.Choix du système de gestion de base de données 23
 I.4.4.Gestion de la base de données des mesures de rugosité et des paramètres de la procédure .. 24
 I.4.4.1.Table de mesure .. 24
 I.4.4.2.Table paramètres de la procédure .. 25
 I.4.4.3.Génération de la base de données des mesures effectuées 25
 I.4.4.4.Génération de la base de données des mesures à étudier 28
 I.5.Structure de traitement ... 29
 I.5.1.Méthodes de redressement (ou prétraitement) .. 30
 I.5.1.1.Prétraitement par polynômes .. 30
 I.5.1.2.Prétraitement par Beespline .. 31
 I.5.1.3.Prétraitement par filtre gaussien ... 33
 I.5.2.Paramètres de rugosité ... 36
 I.5.3.Choix du langage de la programmation .. 37
 I.5.4.Choix du système d'exploitation ... 38
 I.5.5.Lecture du fichier des méthodes de redressement et des paramètres de rugosité 38
 I.5.5.1.Méthodes de redressement .. 39
 I.5.5.2.Paramètres de rugosité .. 41
 I.5.6.Maintenance du code dans le système MesRug 42
I.5.6.1. Ecriture et intégration des nouvelles méthodes de redressement 42
I.5.6.2. Ecriture et intégration des nouveaux paramètres de rugosité 43
I.5.6.3. Paramètres de rugosité dépendant d'autres paramètres 44
I.5.6.4. Paramètres de rugosité dépendant de méthodes lourdes 44
I.5.7. Communication de la base de données et la structure de traitement 45
 I.5.7.1. Connexion via ODBC .. 45
 I.5.7.1.1. Définition ... 45
 I.5.7.1.2. Inconvénients de la technologie ODBC 46
 I.5.7.1.3. Déclaration de la base de données access 46
 I.5.7.2. Communication via ADO .. 50
I.6. Traitement statistique .. 53
 I.6.1. Méthodes statistiques ... 53
 I.6.2. Le bootstrap ... 54
 I.6.3. Quelques méthodes développées ... 56
I.7. Problèmes à traiter non prévus .. 57
 I.7.1. Valeurs manquantes .. 57
 I.7.2. Transformation 3D vers 2D .. 61
 I.7.3. Taille limite de la base de données access ... 64
II. Chapitre II: Caractérisation multi-échelle de l'usinabilité de l'acier AISI 304 67
 II.1. Introduction .. 68
 II.2. Procédure suivie .. 68
 II.3. Matériaux et procédures expérimentales .. 69
 II.4. Mesure .. 69
 II.5. Filtrage Multi-échelle ... 71
 II.6. Construction de la méthode statistique : L'analyse de variance bootstrapée 74
 II.7. Conclusion .. 79
III. Chapitre III: Échelles caractéristiques de l'usinage de super finition par abrasion . 81
 III.1. Introduction .. 83
 III.2. Grinding belt device .. 87
 III.3. Roughness measurement .. 87
 III.4. Multi-scale roughness characterization ... 88
 III.4.1. Basic concept .. 89
 III.4.2. Preliminary result ... 90
 III.4.3. The different stages of the multi-scales analysis 93
Introduction

Le contrôle et la maîtrise de l'état de surface est une problématique importante dans plusieurs domaines en Mécanique. De nombreuses études sont actuellement menées pour appréhender les interactions entre la morphologie de surface et les mécanismes physiques, chimiques ou mécaniques.

Un des aspects essentiels, qui reste encore à améliorer, est la caractérisation précise des surfaces, en fonction des domaines et des besoins, en particulier lorsqu'il s'agit d'extraire les paramètres les plus pertinents pour caractériser une surface et définir l'échelle la plus adéquate pour cette caractérisation.

Cette problématique a fait l'objet de recherches actives car supportées par des besoins industriels forts (brillance des tôles, polissage, prothèses de hanche, endommagements des revêtements, tenue en fatigue...).

Pour tester l'efficacité d'un paramètre d'état de surface, une mesure de pertinence doit être construite et appliquée à la globalité des paramètres d'état de surface. Cette mesure de pertinence ne peut être dissociée de la fonctionnalité de surface. Le but de ce projet est de construire une méthodologie de traitement des paramètres bidimensionnels (profilométrie) qui permet, à l'aide d'un système expert, de donner à l'utilisateur le ou les paramètre(s) d'état de surface optimaux associés à une fonctionnalité recherchée.

Nous proposons donc, en associant de manière forte les modélisations physiques et mécaniques, les techniques statistiques et l'approche multi échelle d'étudier et tester de nouvelles méthodes et méthodologies pour caractériser les surfaces. La démarche proposée permet d'extraire les paramètres les plus pertinents en fonction de l'application. Cette approche peut être appliquée à divers appareils de mesure tels que le rugosimètre tactile, l'interféromètre laser, le microscope confocal, microscope à force atomique,...
L’approche choisie durant cette thèse consiste à rechercher parmi les paramètres de rugosité existants ceux permettant de caractériser au mieux l’influence d’un phénomène physique. Les paramètres et les méthodes proposées nous permettent :

a) de ne pas présumer de l’influence d’un paramètre de rugosité particulier, et donc de traiter l’ensemble des paramètres d’état de surface ;

b) de construire une statistique qui soit la plus fiable possible. Celle-ci doit être robuste (c’est-à-dire peu sensible à des écarts de mesure), convergente (donner en moyenne les mêmes résultats si les conditions expérimentales restent inchangées) et être choisie parmi les méthodes statistiques qui permettent la construction d’estimateurs à faibles variances ;

c) de vérifier l’homogénéité des données ;

d) de considérer chaque paramètre de rugosité comme une variable aléatoire ;

e) de créer un indice probabiliste : chaque paramètre sera affecté d’un indice probabiliste qui sera relié à la probabilité d’affirmer, à tort, que le paramètre d’état de surface est influent vis-à-vis du phénomène physique ou chimique étudié. Pour chaque méthode de traitement, ce chiffre fournit un indice qui permet de comparer la pertinence d’un paramètre vis-à-vis de la réponse de la surface à un phénomène physique ou chimique. L’indice probabiliste de tout nouveau paramètre introduit ne devra pas modifier les indices probabilistes affectés aux autres paramètres déjà évalués ;

f) de classer les paramètres en fonction de leurs pertinences vis-à-vis de la réponse de la surface au phénomène physique ou chimique étudié ;

g) de regrouper les paramètres d’égale influence ;

h) de fournir une représentation visuelle de la pertinence de chaque paramètre ainsi que de sa variabilité ;

i) de déterminer l’échelle spatiale où les paramètres de rugosité seront évalués (longueur ou surface d’évaluation) ;
j) de déterminer l'équation de la surface de référence optimale à partir de laquelle les paramètres d'état de surfaces seront évalués.

Cette approche originale prend en compte particulièrement deux éléments : la longueur d'évaluation et le redressement local de la surface. La norme définit un certain nombre de critères visant à caractériser la rugosité de surface. On y trouve d'abord la description de la ligne moyenne du profil de rugosité qui est la courbe définie par une fonction polynomiale, de degré 1 (le plus souvent), qui minimise les écarts par rapport au profil au sens des moindres carrés sur une distance égale à la longueur d'onde en dessous de laquelle on souhaite étudier la microgéométrie (longueur de base). A partir de ce profil redressé en faisant la différence des hauteurs des points du profil par le polynôme de régression, on définit les saillies (respectivement les creux du profil) comme étant les parties situées au dessus (respectivement en dessous) de la ligne moyenne. Nous proposons dans ce projet de tester le calcul des paramètres d'état de surface par une théorie multi-échelle et de tester la pertinence d'échelle.

Nous présentons donc, la philosophie ainsi que la méthodologie de la construction de l'architecture de ce système appelé « MesRug » (en référence à Mesure de Rugosité). Nous expliquons aussi la technologie utilisée pour la réalisation de ce système, la manière de l'utiliser et l'enrichir par de nouvelles approches multi-échelles ainsi que de nouveaux paramètres de rugosité. Nous présentons aussi quelques développements et analyses multi-échelles (régression polynomiale, filtre gaussien, Bspline...) intégrés dans le système « MesRug » pour déterminer les caractéristiques d'un ensemble d'éléments (échelle de la mesure, paramètre, filtre, ...) permettant de discriminer au mieux une propriété recherchée; les méthodes statistiques utilisées (bootstrap, analyse discriminante, ...) pour déterminer la pertinence des paramètres de rugosité, puis les applications menées pour différentes études (interaction rugosité-usage, paramètre d'usinabilité et états de surface, ...) en utilisant cette approche.

En conclusion, nous suggérons quelques voies possibles pour poursuivre ce travail.
Dans ce chapitre, nous décrivons la philosophie ainsi que la méthodologie de la construction de l'architecture du système « MesRug ». Nous expliquons la technologie utilisée pour la réalisation de ce système, la manière de l'utiliser et l'enrichir par de nouvelles approches multi-échelles ainsi que de nouveaux paramètres de rugosité. Enfin, un aperçu sur les problèmes à traiter non prévus.
I.1. Outils de caractérisation statistique

L'objet principal des études en morphologie des surfaces consiste à résumer l'information de manière optimale. Dans nos études, nous étudions plus particulièrement la signification physique, les méthodes numériques et les artefacts numériques du calcul d'un paramètre de rugosité X. Le problème fondamental est de répondre à la question suivante "le paramètre de rugosité X est-il un paramètre pertinent et à quelle échelle ?"

Cette question n'a aucun sens s'il n'est pas précisé « pertinent vis à vis de quels processus physiques ». Illustrons ce propos par un exemple de caractérisation de surface par mesure de rugosité :

p échantillons d'un matériau ont subi différents mécanismes d'usure. n mesures de rugosité sont effectuées sur chaque échantillon (un raisonnement analogue serait applicable à la caractérisation de surface par analyse d'images).

Disposant alors des mesures de rugosité, l'usage courant est d'en déduire quelques paramètres (par exemple, le Ra, Rt, Rq, etc...). Nous recherchons une corrélation entre ces quelques paramètres et les différents mécanismes d'usure. Par exemple, il peut être d'usage dans une catégorie professionnelle d'utiliser un paramètre particulier de rugosité (souvent le Ra ou le Rt) et d'analyser les relations de ce paramètre avec le phénomène d'usure, puis de déduire éventuellement des caractéristiques tribologiques du matériau. Cependant, si un autre paramètre permet de mieux caractériser la surface vis à vis du phénomène d'usure, les conclusions de l'analyse doivent être nuancées, voire même différentes. De même, il est d'usage très fréquent, dans la communauté scientifique, de retenir le paramètre de morphologie de surface qui possède une interprétation physique connue (le Rq d'une surface caractérise les phénomènes de brillance). Cependant s'il est montré expérimentalement qu'un autre paramètre de rugosité caractérise mieux le phénomène physique, alors son caractère discriminant doit être justifié.

La pertinence de ces nouveaux paramètres devra être confrontée aux paramètres d'état de surface déjà existants. Donc, pour tester l'efficacité d'un paramètre d'état de surface, une mesure de
pertinence doit être construite et appliquée à la globalité des paramètres d'état de surface. Cette démarche n'a jamais été entreprise dans la science des états de surfaces et constitue la clef de voûte de notre approche. Elle nécessite de calculer tous les paramètres recensés dans les normes et la bibliographie. Aucun logiciel commercial ne permet une telle tâche et les personnes tentées d'appliquer cette approche devront concevoir leur propre application informatique. De plus, il est nécessaire de créer une méthode statistique robuste de la mesure de l'efficacité qui induit un codage du système physique. Dans les chapitres traitant des états de surfaces, tous les paramètres de rugosité sont analysés et affectés d'un chiffre d'efficacité permettant un classement de leur pertinence en fonction de leur indice d'efficacité. Cette philosophie de traitements numériques des états de surface permet de s'affranchir d'une certaine subjectivité dans l'utilisation des paramètres et de traiter l'information avec plus d'objectivité. Par cette méthode, nous montrons qu'un paramètre de rugosité X est un paramètre qui peut être très pertinent vis à vis de nombreux phénomènes physiques.

I.2. Construction d'une méthode

Le problème de la recherche des paramètres de caractérisation des états de surface est complexe et il n'est guère possible, en l'état actuel, de déterminer une méthode universelle applicable à toute étude de rugosité. Pour cerner le problème lié à la détermination des paramètres influents, nous avons montré qu'une étude de la rugosité peut être mise sous forme d'un système matriciel.

Un mécanisme opératoire ou physique permet d'obtenir une surface ayant une rugosité déterminée. Cette surface peut être décrite par une multitude de paramètres. Elle est ensuite soumise à un processus physique. En fonction des paramètres de la surface qui dépendent des conditions initiales, la réponse du processus sera différente. Selon la nature numérique des réglages du procédé (variables qualitatives, quantitatives, mixtes, aléatoires ou déterministes, contrôlables ou non contrôlables) et la nature présumée des relations entre paramètres de rugosité et processus physiques (linéaires, logarithmiques, paraboliques, etc...), la méthode de
recherche des paramètres optimaux sera différente. Afin de garantir une homogénéité d'interprétation des résultats, toute méthode devra respecter dix règles de bases :

1) Ne pas présumer de l'influence d'un paramètre particulier, et donc traiter la totalité des paramètres.

2) Construire une statistique qui soit la plus fiable possible. Elle doit être :
Robuste : être peu sensible à des écarts de mesure. Convergente : donner en moyenne les mêmes résultats si les conditions expérimentales restent inchangées. De faible variance : parmi toutes les méthodes statistiques retenues, nous choisirons celle qui permet la construction d'estimateurs à faibles variances.

3) Créer un indice probabiliste : chaque paramètre sera affecté d'un indice probabiliste compris entre 0 et 1 qui représentera la probabilité d'affirmer à tort que le paramètre est influent alors qu'il ne l'est pas. Ce chiffre fournit, pour chaque méthode de traitement, un indice universel qui permet de comparer la pertinence d'un paramètre vis à vis d'une classe de phénomènes physiques.

4) Etre visuelle : le traitement doit fournir une représentation visuelle de la pertinence du paramètre ainsi que de sa variabilité.

5) Classer les paramètres par ordre de caractère discriminant.

6) Vérifier l'homogénéité des données.

7) Considérer chaque paramètre de rugosité comme une variable aléatoire.

8) Regrouper les paramètres d'égale influence.

9) Déetecter les éventuelles corrélations entre les paramètres.

10) Si un nouveau paramètre est introduit, l'indice probabiliste affecté aux autres paramètres devra rester inchangé.

Nous pensons qu'il n'est pas possible de trouver une méthode universelle qui permette de traiter tous les cas physiques. En effet, en fonction de ces conditions expérimentales, une méthode de traitement sera plus ou moins perspicace. Il est d'abord nécessaire de construire la matrice d'étude
du système qui permet de faire abstraction du phénomène physique et par là, rechercher une méthode existante.

Nous avons donc choisi cette approche pour caractériser une surface car une caractérisation n'a aucun sens si la physique du phénomène n'est pas prise en compte avec la même rigueur que la construction de l'outil numérique de la morphologie de surface. Cette approche des états de surface complexe car nouvelle, nécessite la construction de méthodes statistiques et la création d'outils informatiques adéquats. Nous sommes convaincus que cette philosophie d'approche offrira des perspectives nouvelles dans la mesure et le traitement des états de surfaces.

I.3. Les aspects informatiques

Notre approche statistique de la mesure des états de surface nécessite le calcul de la totalité des parameters d'état de surface pour toutes les mesures effectuées, et de disposer d'une application informatique qui permette leurs calculs, ainsi que d'un traitement statistique. Dans ce but, les valeurs numériques des paramètres doivent être traitées sans manipulation excessive. De plus, l'application doit permettre d'interfacer les différents appareils de mesure (rugosimètre tactile, microscope confocale, etc...). Une étude de caractérisation d'état de surface n'est pas une mesure d'état de surface mais l'analyse d'une base de données relationnelles. De même, les études doivent être codifiées et archivées pour pouvoir être éventuellement retraitées ultérieurement, car la pertinence d'un nouveau paramètre de rugosité doit être analysée pour la totalité des études existantes. Ceci nécessite une traçabilité des mesures effectuée dans un système de gestion de base de données relationnelles.

La majorité des surfaces rencontrées en Sciences des Matériaux sont stochastiques : une mesure ne suffit pas à les caractériser. Si plusieurs surfaces sont étudiées, le nombre de données à traiter devient considérable et un traitement individuel n'est plus envisageable. Les mesures doivent être traitées dans leur globalité. En effet, le nombre impressionnant de mesures d'état de surface rend rédhibitoire un traitement individuel interactif et l'ensemble des données doit être traité en lot.
I.3.1. Les logiciels existants

Seuls les logiciels de rugosimétrie seront abordés mais cette analyse pourra être étendue sans difficulté majeure à d'autres applications de traitement de morphologie de surfaces (analyse d'images, traitement du signal, etc...). Dans cette partie, nous allons montrer que les logiciels existants sont peu adaptés au traitement de surfaces stochastiques sans citer de marques de logiciels car notre but n'est pas d'effectuer un essai comparatif mais plutôt d'analyser les lacunes communes des logiciels existants.

Ces derniers sont :

1) Adaptés à ne traiter qu'un fichier de mesures : les logiciels actuels ne traitent qu'un fichier de mesures. Or, une étude d'état de surface peut contenir jusque 1000 fichiers de mesures. Faut-il alors effectuer les 1000 traitements, noter les paramètres (près d'une centaine) et reporter manuellement les résultats dans un tableau pour divers traitements statistiques ?

2) Ne contiennent qu'un nombre limité de paramètres : notre champ d'investigation ne peut être limité aux paramètres conventionnels. Il est donc nécessaire d'inclure de nouveaux paramètres d'état de surface dans le logiciel (calcul de dimension fractale). Certes, des logiciels, dont « Aphelion », disposent d'un langage de programmation pour construire certains paramètres. Cependant, ces programmes sont tributaires de routines internes au logiciel qui risquent de ne plus être portables pour une version ultérieure. Comment alors être assuré de la rentabilité de l'investissement ?

3) Inadaptés à l'analyse statistique : les programmes permettent de quantifier une surface individuelle mais pas son évolution. Ils sont donc peu adaptés à traiter un problème d'état de surface dans sa globalité. Comment alors faire pour caractériser une surface vis à vis d'un phénomène physique ?

4) Souvent conçus pour un système de mesure spécifique. Les logiciels actuels sont souvent développés (ou sous-traités) par les fabricants des appareils de mesure. De ce fait, ils ne seront
adaptés qu’aux traitements des données propres à chaque appareil. Comment alors traiter de manière homogène les signaux issus d’appareils de mesures différents ?

5) Trop nombreuses manipulations : une étude d’état de surface est effectuée sur de nombreux fichiers. Les acquisitions faites, aucune manipulation ne doit être entreprise pour traiter les données, l’opérateur ne doit se concentrer que sur les résultats de l’analyse et non sur les manipulations liées à cette analyse (perte de temps). Comment alors avoir une vision globale sur une étude de rugosité quand plusieurs milliers de manipulations doivent être entreprises ?

6) Fiabilité de certaines procédures : il est absolument nécessaire de connaître les algorithmes utilisés pour la construction de certains paramètres (transformée de Fourier, filtrage, etc...).

Les algorithmes sont rarement précisés dans les documentations relatives aux logiciels. Comment alors garantir la véracité des paramètres ?

7) Pas d'algorithme non linéaire : certains calculs de paramètres nécessitent formellement une optimisation non linéaire (calcul des longueurs d'autocorrélation, dimension fractale, etc...). Ces algorithmes très complexes sont itératifs et peuvent souvent ne pas converger et introduire des dépassements de capacité numérique ou des valeurs aberrantes. Pour ces raisons, les auteurs utilisent des algorithmes non itératifs en linéarisant la physique du phénomène. Comment alors garantir que les approches linéaires sont pertinentes ?

8) Pérennité du logiciel : la durée de vie des sociétés de construction de logiciel est en moyenne assez courte et il nous paraît illusoire de reposer intégralement nos systèmes d’analyse sur ce paramètre extérieur indépendant. Comment alors garantir l’évolution du système informatique ?

Ces nombreuses interrogations n’ont pas de réponse en l’état actuel. En effet, les logiciels commerciaux ne peuvent apporter de solution aux questions soulevées sans remettre en cause leur existence. Pour ces raisons, nous avons décidé de concevoir notre propre système d'analyse d’état de surface appelé MesRug.
8) Ne sont pas multi-échelles : les industries attachent une importance grandissante à la qualité des surfaces et les différentes approches définies dans la majorité des logiciels de traitements de surface ne préconisent aucune méthodologie de caractérisation multi-échelles des surfaces.

I.3.2. Présentation du projet MesRug

Le projet MesRug n'est pas l'écriture d'un simple logiciel de traitement de fichiers de rugosité, il constitue un environnement d'analyse d'état de surface. L'analyse débute par le codage de l'information. Chaque lettre du nom de fichier contient une information représentative d'une signification physique de la surface. Une table de décodage permet le traitement simplifié des données du problème. La partie délicate du traitement réside dans l'encodage et le décodage de l'information initiale. Cette étape réalisée, le gain de temps en traitement informatique est impressionnant. Illustrons cette démarche par un exemple simple. Soient dix échantillons d'état de surface différents correspondant à deux matériaux. Trente mesures de rugosité sont effectuées sur chaque échantillon. L'objet de cette analyse est de répondre à la question : quels sont les paramètres qui discriminent au mieux les différents états de surfaces des deux matériaux? Le logiciel précise alors dans MesRug le nom de dossier, celui de la table des correspondances et les options de calculs des paramètres de rugosité puis lance le calcul des paramètres. MesRug décrypte la totalité des fichiers, calcule les paramètres de rugosité, crée des fichiers textes pour d'éventuelles analyses ultérieures (spectres, fonction d'autocorrélation, etc...), et crée des fichiers graphiques en préservant le codage effectué par l'opérateur. Le fichier des paramètres est codé pour être utilisable sous Excel® Statistica® et sous le langage SASTM. La structure du fichier est construite pour que l'utilisateur n'ait plus qu'à "questionner" la banque de données. Les traitements statistiques sont effectués sous le langage SASTM (Statistical Analyses System). Le fichier des paramètres est introduit dans ce langage et l'utilisateur dispose alors de requêtes qui permettent le traitement des informations. Par exemple "Quels sont les moyennes des paramètres par classe de matériaux ?". Il dispose de toutes les routines de traitement statistique du langage SASTM (SASTM est le langage de référence en traitement statistique) ainsi que de ses outils graphiques et
d'analyses Bootstrap de recherches automatiques des paramètres influents. Les fichiers graphiques offrent l'avantage de pouvoir être observés rapidement avec un visualisateur d'image quelconque. Cette technique permet de visualiser instantanément les profils de rugosité, les histogrammes des amplitudes, les spectres, etc... sans relancer une application. L'idée directrice suivie est de permettre un interfaçage avec les logiciels existants car il est inutile de réécrire un logiciel de statistique, ni un logiciel de retouche d'image...

Nous concevons les fichiers pour que la majorité des logiciels puisse traiter les résultats d'une manière optimale.

La figure I-1 montre une illustration des différents liens de traitement de données dans l'architecture du logiciel MesRug, que nous détaillons dans les paragraphes suivants.
I.4. Structuration d’une étude de rugosité et système de gestion de base de données.

Dans le but de simplification, normalisation et traçabilité d’une étude de rugosité, notre étude démarre par le codage de l’information issue de l’étude expérimentale, dans un système de gestion de base de données.

![Diagramme de Structuration d’une étude de rugosité](image)

Figure I-2 : Première étape d’application de MesRug

I.4.1. La base de données

Une base de données est un ensemble structuré de données enregistrées sur des supports accessibles par l’ordinateur pour satisfaire simultanément plusieurs utilisateurs de façon sélective et en un temps opportun. Elle doit avoir un certain nombre de caractéristiques :

- **Données structurées** : Les informations contenues dans une base de données sont réparties en enregistrements, chaque enregistrement ayant une structure bien définie.

- **Données non redondantes** : Une même information ne sera pas répétée plusieurs fois dans la base de données.

- **Données cohérentes** : Il ne doit pas être permis d’enregistrer dans une base des informations incohérentes entre elles.
Chapitre I : Nouveau système d'analyse des états de surface

- **Données accessibles directement selon multiples critères.**

- **Indépendance des programmes et des données** : La base de données doit être indépendante des programmes qui y ont accès. On doit pouvoir utiliser un autre programme pour traiter différemment ces données sans avoir à toucher à ces données.

- **Sécurité des données stockées** : la base de données doit permettre un système de sécurité permettant de gérer les droits d'accès aux informations par les utilisateurs.

1.4.2. Le système de gestion de base de données

Un système de gestion de base de données (S.G.B.D) représente un ensemble coordonné de commandes qui permet de décrire, manipuler, traiter les ensembles de données formant la base.

Il doit pouvoir être utilisé par des non-informaticiens. Il doit assurer la définition des structures de stockage et des structures de données ainsi que le suivi de leurs évolutions ; c'est ce qu'on appelle l'administration des données. Ce système doit pouvoir au maximum vérifier la cohérence des données.

Le SGBD sert donc d'interface entre les programmes d'application des utilisateurs d'une part, et de données d'autre part.

1.4.3. Choix du système de gestion de base de données

Avant de pouvoir exploiter les données contenues dans la base, il va falloir les modéliser. Par modéliser je veux dire trouver le meilleur moyen de représenter le monde réel en structurant la base de données de manière à pouvoir l'exploiter le plus simplement possible par la suite.

Microsoft Access est un SGBD qui nous a permis cette structuration, avec une capacité assez importante de stockage de l'information, et la possibilité de communication avec d'autres logiciels d'analyses et traitements.
I.4.4. Gestion de la base de données des mesures de rugosité et des paramètres de la procédure

Dans Access, les informations doivent être segmentées en données qui sont stockées dans des tables. Une table est donc un ensemble de données, organisées en lignes et en colonnes. On peut stocker dans une table n’importe quel type d’information (texte, chiffres,…).

I.4.4.1. Table de mesure

La première étape consiste à saisir des informations sur l’étude de rugosité effectuée sur une surface affectée à une et une seule configuration des paramètres de procédure ayant créé la surface. Ces informations correspondent aux :

- **Nombre d’échantillons** maximum par configuration du paramètre de procédure : C’est le nombre maximum d’échantillons prélevés pour une étude de rugosité.

- **Nombre de mesures** : c’est le nombre maximal de mesures sur un échantillon prélevé pour une étude de rugosité.

- **Extension des fichiers de mesure** : c’est le suffixe donné au nom des fichiers pour identifier leurs formats, par exemples « .txt », « .doc », « .std » (c’est l’extension prise par défaut pour les fichiers contenant des profiles 2D dans le cadre de ce projet), etc…

- **Position de la mesure** dans l’échantillon : c’est une zone dans l’échantillon où sont effectuées les mesures. Par exemple : bord, centre, etc …

- **Sens de la mesure** : c’est la direction dans laquelle est palpé l’échantillon. Par exemple : long, travers, un entier,…

- **Appareil de mesures** : Tencor, AFM, Perthen, Veeco, etc ….

- **Fichier abrégé** : oui ou non.

- **Zone commentaire** : c’est une zone réservée pour l’utilisateur afin qu’il puisse rajouter des notes sur le type d’expériences qu’il a effectué.
- **Zone fichiers attachés** : cette zone contient les fichiers de configuration de la mesure, ainsi que les fichiers que l'on désire affecter à cette étude (image, protocole, publie, ...).

Cette étape ainsi que celles qui suivent ont été réalisées sous VBA (Visual Basic for Access) ([KOROL 2005]; [CAROZA 2004]; [VINE 2005]), avec la création d’une interface interactive qui permet un accès plus simple aux données. De plus les données ne sont pas présentées brutes, elles sont mises en forme.

Cette interface comporte une dimension ergonomique qui permet d’accéder agréablement aux informations. Grâce à l’interactivité, un utilisateur non-informaticien peut mieux utiliser ce système de gestion de base de données et par conséquent ce qui va s’afficher à l’écran dépend de l’action effectuée par l’utilisateur (clic ou saisie de données) (voir figure A-1, figure A-2 dans la partie Annexe A).

I.4.4.2. Table paramètres de la procédure

La seconde étape consiste à créer une nouvelle table à laquelle sont ajoutés les paramètres de la procédure qui ont générés la surface, ainsi que les paramètres mesurés au cours de l’étude mais qui ne sont pas à l’origine de générations de surfaces et serviront pour l’analyse statistique ultérieure. A chaque ensemble de paramètres de la procédure correspond une et une seule configuration globale.

A cette étape, comme dans la précédente, l’utilisateur a différentes possibilités d’ajout ou de suppression de paramètre par de simples clics ou saisies de données, ainsi que la possibilité de visualisations des tables créées.

I.4.4.3. Génération de la base de données des mesures effectuées

L’objectif de cette étape est de proposer à l’utilisateur les noms de fichiers de rugosité qu’il va utiliser et de donner la structure de la base à analyser statistiquement. Cette étape permet également de référencer les échantillons physiques dans un souci de traçabilité.

Illustrons cette démarche méthodologique par un exemple :
Sur un échantillon, 40 mesures ont été effectuées sur la surface avec deux types de coupe A et B et deux procédures d’usinage sur chaque type de coupe : une opération de chariotage qu’on note C et une opération de dressage qu’on note D.

La saisie de ces informations nous permet d’obtenir deux tables : table de mesure (Figure I-3) et table de paramètres de procédure (Figure I-4).

Par conséquent, la génération de la base de données des mesures effectuées nous permet d’obtenir la structure (voir Figure I-5) :

Figure I-3 : Exemple de résultats de l’affichage de table de mesure

Figure I-4 : Exemple de table des paramètres de la procédure
Tableau I-5 : Structure de la base de données générée permettant la mesure de rugosité

Deux nouvelles colonnes sont créées, une contient le nom de la référence de l'échantillon sous la forme ech_p1_p2_..., pn, l'autre les noms des fichiers qui sont codés sous la forme ech_p1_p2_..., pn_num.aaa

Où :

- p1, p2, ..., pn sont les valeurs des paramètres de la procédure,
- ech est le numéro de l'échantillon,
- Num est le numéro de la mesure effectuée.
- « .aaa » est l'extension de fichier de mesure.
I.4.4.4. Génération de la base de données des mesures à étudier

Cette dernière étape consiste à vérifier que les fichiers standardisés avec leurs extensions sont présents dans le répertoire courant et permet de générer une base de données ne contenant que les fichiers de la même extension présents dans ce même répertoire.

Dans l'exemple précédent on suppose qu'on a seulement huit fichiers dans le répertoire courant « 1_A_C_1.std, 1_A_C_2.std, 1_A_D_1.std, 1_A_D_2.std, 1_B_C_1.std, 1_B_C_2.std, 1_B_D_1.std, 1_B_D_2.std », la structure de la base de données générée sera de la forme (voir Figure 1-6).

![Table_Finale_Nettoyer : Table](image)

Figure 1-6 : base de données des mesures à étudier

Remarque :

Nous donnons la possibilité à l'utilisateur de passer directement au traitement des fichiers de mesure qu'il souhaite étudier, sans passer par une structuration de son étude de rugosité. Un simple clic sur la commande de génération de la base de données avec les fichiers de mesure, permet d'avoir la table contenant la liste des fichiers à traiter (Figure 1-7).
I.5. Structure de traitement

Cette étape consiste à saisir les différentes méthodes de prétraitements et de calcul des paramètres de rugosité. Cette application permet de créer à partir d’un et un seul profil, un ou plusieurs profils sur lequel (ou lesquels) on calcule l’ensemble des paramètres de rugosité souhaité par l’utilisateur.

Pour respecter la philosophie nous avons construit l’algorithme de traitement suivant :

Algorithme de traitement

```
Lecture de la description des Méthodes de redressement et des paramètres de rugosité

Lecture d’un profil de rugosité de la base de données

Application consécutives des méthodes de redressement

Calcul de l’ensemble des paramètres de rugosité du profil redressé

Enregistrement des paramètres dans la base de données
```
I.5.1. Méthodes de redressement (ou prétraitement)

Pour réaliser une caractérisation fine d’une mesure de rugosité, on doit auparavant lui appliquer un prétraitement visant à éliminer sa forme et à la redresser suivant une forme imposée.

De nombreuses méthodes sont disponibles pour réaliser cette tâche, entrant dans le cadre de l’approximation des surfaces : lissages polynomiaux par méthode des moindres carrée, lissage sur la base des fonctions splines ou B-splines, filtrage par transformée de Fourier, filtrage gaussien, ou filtrage numérique utilisant l’analyse spectrale, etc….

Nous présentons quelques une de ces méthodes développées et intégrées dans MesRug, ce qui constitue un échantillon vers d’autres développements futurs.

I.5.1.1. Prétraitement par polynômes

Le redressement d’un profil nécessite la détermination du meilleur ajustement par la méthode des moindres carrés [PRESS 2002]. En effet, cette méthode permet de déterminer la fonction qui reproduit le mieux les données expérimentales.

Soit \(P(X) = a_0 + a_1X + a_2X^2 + \ldots + a_nX^n \) un polynôme de degré \(n \).

Si par exemple, nous disposons de \(N \) données \((y_i)_{i=1\ldots N} \) sur un profil de rugosité. Les paramètres \(\{a_1, a_2, \ldots, a_n\} \) optimaux au sens de la méthode carrés sont ceux qui minimisent la quantité :

\[
E = \sum_{i=1}^{N} (y_i - P(X_i)) = \sum_{i=1}^{N} r_i,
\]

où les \(r_i \) sont les résidus du modèle.
Chapitre I : Nouveau système d’analyse des états de surface

Figure I-8 : Exemple de redressement d’un profil de rugosité par la méthode des moindres carrés : en bleu le profil original, en rouge le profil redressé.

1.5.1.2. Prétraitement par B spline

Un profil de rugosité est découpé en fenêtres de longueurs égales que nous considérons comme étant la longueur d’évaluation L. Sur chaque fenêtre, le profil de rugosité est redressé par un polynôme de degré 1, en utilisant une régression linéaire aux moindres carrés et une continuité entre chacune de ces droites de régression est imposée. Le fait d’imposer une continuité de type C^1 entre chaque fenêtre conduit à l’obtention d’une fonction B-spline [FARIN 2002] pour redresser un profil de rugosité. Cette méthode numérique conduit donc à calculer la B-spline qui minimise l’écart quadratique par rapport au profil et qui permet de supprimer les écarts géométriques de forme et d’ondulation d’un profil.

Une courbe B-spline $P(t)$ de degré k, est définie par :
\[P(X) = \sum_{i=0}^{n} P_{i} N_{i,k}(t) \]

Les \(P_{i} \) sont appelés points de contrôle.

Les \(n+1 \) fonctions B-splines de degré \(k \) sont définies par récurrence

\[N_{j,1}(t) = \begin{cases} 1 & t_{j} \leq t < t_{j+1} \\ 0 & \text{sin on} \end{cases} \]

Et si \(k > 1 \),

\[N_{j,k}(t) = \frac{t-t_{j}}{t_{j+k}-t_{j}} N_{j,k-1}(t) + \frac{t_{j+k}-t}{t_{j+k}-t_{j+1}} N_{j+1,k-1}(t) . \]

Avec \(t_{k-1} \leq t < t_{n+1} \).

Les deux exemples suivants montrent le redressement d'un profil de rugosité par des polynômes, en utilisant une régression aux moindres carrés et une discontinuité entre chacune des droites de régression et la seconde avec une continuité entre ces droites (figures I-9 et I-10).

Figure I-9 : Exemple de redressement d'un profil de rugosité par un polynôme sur des fenêtres de longueurs égales.
Chapitre I : Nouveau système d’analyse des états de surface

Figure I-10 : Exemple de redressement d’un profil de rugosité par la méthode de B-spline

1.5.1.3. Prétraitement par filtre gaussien

Si nous souhaitons séparer les différents ordres de défaut présents sur un profil, il sera nécessaire de filtrer celui-ci. Ce filtre peut être, passe-bas (seuls les défauts de grande longueur d’onde sont conservés), passe-haut (seuls sont conservés les défauts de petite longueur d’onde), passe-bande (on conservera les défauts dont la longueur d’onde est comprise entre deux limites).

La fonction qui définit un filtre gaussien passe-bas dans la norme ISO 11562-1996 est donnée par l’équation suivante :

\[S(x) = \frac{1}{\alpha \lambda_o} e^{-\left(\frac{x}{\alpha \lambda_o}\right)^2} \]

(1)

Où

\(x \) est la position par rapport au centre de la fonction de pondération

\(\lambda_o \) est la longueur d’onde de coupure du filtre de profil

\[\alpha = \sqrt{\frac{\ln 2}{\pi}} = 0.4697 \]
Pour une analyse numérique qui nous a paru simple, exacte et assez rapide, nous avons opté pour l'algorithme proposé par [YUAN 2000] basé sur une approche par le théorème de la limite centrale de e^{-u^2}.

Cette approximation est donnée par la formule suivante :

$$\lim_{\pi \to 0} \left(\frac{\sin c_n\pi u}{c_n\pi u} \right)^n = e^{-u^2}$$

(2)

Où c_n est une constante qui dépend de n.

On pose :

$$H\left(\lambda_{co} / \lambda\right) = e^{-\pi(a\lambda_{co}/\lambda)^2}$$

(3)

Avec les équations (2) et (3), on peut construire une série de filtres $H_n\left(\lambda_{co} / \lambda\right)$, qui sera donnée par :

$$H_n\left(\lambda_{co} / \lambda\right) = \left(\frac{\sin(c_n\pi\lambda_{co}/\lambda)}{c_n\pi\lambda_{co}/\lambda} \right)^n$$

(4)

Avec c_n est une constante tel que $\lambda = \lambda_{co}$ et $H_n\left(\lambda_{co} / \lambda\right) = 50\%$.

c_n sont déterminés pour chaque n par la dichotomie.

Pour lisser le signal, nous appliquons un filtrage à moyenne mobile qui est déterminé par la fonction suivante :

$$S_n(x) = \begin{cases} 1 & \text{si } |x| \leq (c_n\lambda_{co})/2 \\ 0 & \text{si } |x| > (c_n\lambda_{co})/2 \end{cases}$$

(5)

Ce qui équivaut à calculer :

$$S_n(x) = \left(\frac{1}{c_n\lambda_{co}} \int_{-(c_n\lambda_{co})/2}^{-(c_n\lambda_{co})/2} \delta(t) dt \right)^n$$

(6)

Numériquement :

$$S_n(i) = \left(\frac{1}{2k+1} \sum_{j=-k}^{j+1} \delta(j) \right)^n$$

(7)
Chapitre I : Nouveau système d’analyse des états de surface

Avec $2k + 1$ est la partie entière du produit $c_n A_{co}$.

On pose $i = 1$ et $\delta(j) = z^j, \forall j$, l’équation (7) implique :

$$
S_n(0) = \left(\frac{1}{2k+1} \frac{z^{-k}(1-z^{2k+1})}{1-z} \right)^n = H_n(z)
$$

(8)

Donc, l’équation (8) nous permettra de présenter la moyenne mobile sous la forme :

$$
H_n\left(\frac{N}{N_c}\right) = \left(\frac{1}{2k+1} \frac{\sin\left(\frac{(2k+1)\pi}{N}\right)}{\sin\left(\frac{\pi}{N}\right)} \right)^n
$$

(9)

Avec :

- N_c est le nombre de points correspondants au cut-off A_{co}.
- N est le nombre de points du signal, i.e. $N = \left(\frac{\lambda}{A_{co}} \right) N_c$.
- k est un entier, tel que : $2k + 1 = c_n N_c$.

Le filtre gaussien est donné par la formule suivante :

Pour chaque $p = 1,2,3,...,n$, on a : $S_p(i) = \sum_{j=(p-1)k+1}^{(p+1)k} S_{p-1}(j)$ pour $i = pk + 1$

$$
S_p(i) = S_p(i-1) + S_{p-1}(i+k) - S_{p-1}(i-k-1),
$$

(10)

Pour $i = pk + 2, pk + 3,...,M - pk$, avec M est le nombre total de point du profil original, et tels que :

$$
S_0(1) = y(1), S_0(2) = y(2),..., S_0(M) = y(M)
$$

(11)

Un filtre gaussien passe-haut correspond donc à : $F(x) = 1 - S(x)$.

L’exemple suivant montre le redressement d’un profil de rugosité par filtrage gaussien passe-haut puis passe-bas avec une longueur de coupure (cut-off) égale à 800 µm.
Figure I-11 : Exemple d’un redressement d’un profil de rugosité par un filtre gaussien

1.5.2. Paramètres de rugosité

La rugosité d’une surface donnée peut être déterminée par la mesure d’un certain nombre de paramètres. MesRug permet de calculer plus de 100 paramètres de rugosité (paramètres de rugosité d’amplitude, de fréquences, hybrides et fractales) dans son état actuel avec possibilité d’intégrer des nouveaux paramètres.
I.5.3. Choix du langage de la programmation

Si on souhaitait faire une comparaison des différents langages de programmation sans distinction pour faire un choix, notre comparaison ne serait pas pertinente. Au niveau du codage, le plus important est la programmation modulaire, c'est le cas de la programmation en C++. Les idées qui sont à la base et qui sont nécessaires à l'uniformité de la construction du code MesRug sont les suivantes :

- Créer des routines indépendantes de la problématique globale, donc réutilisables pour d'autres applications.
- Non redondance du code
- Diviser le travail en plusieurs parties indépendantes ou presque, donc sur plusieurs périodes.
- Portabilité du code.
- Rapidité et fiabilité
- Respect parfait du standard Windows pour la création des interfaces.
- Durée de vie du langage.

En effet il est plus facile de décomposer la construction de MesRug en plusieurs éléments, forcément plus simple, que de la traiter dans sa totalité. Ce qui permet des développements par équipes ou une programmation individuel.

Pour parvenir à ce but, le langage C++ nous permet une construction en sous programmes indépendants, ou presque indépendants. Ces programmes sont dans des fichiers séparés (fichiers sources et fichiers entêtes).

I.5.4. Choix du système d’exploitation

Pour le système d’exploitation notre choix s’est porté sur Windows XP/Vista pour les raisons suivantes :

- Sa large utilisation dans le domaine d’acquisition de mesures topographiques.
- Son utilisation dans le tissu industriel.
- Permet un interfaçage avec C++.
- Durée de vie du système.
- Sa convivialité.

I.5.5. Lecture du fichier des méthodes de redressement et des paramètres de rugosité

Ce fichier est nommé « listing.txt » (Figure I-12), dans lequel l’utilisateur renseigne les méthodes de redressement qu’il souhaite appliquer aux profils de rugosité, ainsi que les paramètres de rugosité à calculer.

```
Listing.txt

Méthodes de redressement successives : T[k][Y,[Z1,Z2,Z3,...]]

//nombre de découpe pour étude multiéchelle
T[1][1,[1,2]]

// Redressement polynômial
T[2][1,[0,1,2,3]]

// Redressement polynomial par intervalles
T[2][1,[1,1]]
T[2][2,[4,5,6]]

// Redressement par filtre Gaussien (algorithme de Verbuergner)
T[3][1,[800]]
T[3][2,[passer_haut,passer_bas]]

// Redressement par les Bsplines
T[4][1,[1,2]]
T[4][2,[10,100,1000,2000]]

Paramètres de rugosité : R[Name,[ZL...],[Z2...],[Z3...],...]

// Paramètre Ra
R[Ra]

// Paramètre Rq
R[Rq]

// Paramètre Sk
R[Sk]

// Paramètre dimension fractale
R[DF,[100,500,1000],[10000,20000,100000],[500,1000],[1]]
```

Figure I-12 : présentation du fichier des méthodes de redressement et des paramètres de rugosité.
I.5.5.1. Méthodes de redressement

Une méthode est définie par la donnée de l'ensemble des paramètres nécessaires.

Elle sera présentée sous la forme :

\[T[Mt][Y,\{Z_1^1, Z_1^2, Z_1^3, ..., Z_1^{n1}\}] \]

Numéro de la méthode Structure Sous Structures souhaitées

\(n1 \) présente le nombre maximal de méthodes de redressement \(Mt \).

Dans le cas général une méthode de redressement qui nécessite plusieurs paramètres s'écrit sous la forme :

\[T[Mt][Y_1,\{Z_1^1, Z_1^2, Z_1^3, ..., Z_1^{n1}\}] \]
\[T[Mt][Y_2,\{Z_2^1, Z_2^2, Z_2^3, ..., Z_2^{n2}\}] \]
\[... \]
\[T[Mt][Y_m,\{Z_m^1, Z_m^2, Z_m^3, ..., Z_m^{nm}\}] \]

\(N = n1 \times n2 \times ... \times nm \) est le nombre totale de méthodes de redressement \(Mt \) à appliquer.

L'application de plusieurs méthodes de redressement consécutives nous a conduit à mettre en place une méthode de récurrence permettant de fortement limiter la mémoire nécessaire (destruction des profils inutiles) et d'accélérer le temps de calcul (absence de doublons dans les calculs).

Nous présentons dans la figure I-13 le principe de cette application :
Chaque méthode de redressement envisageable est préalablement définie dans MesRug pour vérification de son acceptabilité lors de la lecture de « Listing.txt ».

La structure de la méthode « Mt » de redressement est définie dans MesRug par :

```c
// Création d'une méthode de redressement : Redressement_Mt

// Création de la liste de sous-structures « Degré » => Paramètres acceptables
list<SousStructure> list_degre_Mt;

// Création de la liste de sous-structures « Window » => Paramètres acceptables
list<SousStructure> list_window_Mt;

// Création de la liste des structures du redressement envisageables
list<Structure> list_struct_Mt;

list_struct_Mt.push_back(Structure("Degre", list_degre_Mt));
list_struct_Mt.push_back(Structure("window", list_window_Mt));

// Création d'un objet du redressement
Redressement_Mt Mt_prt("Mt");
```
I.5.5.2. Paramètres de rugosité

L'appel à un paramètre de rugosité, d'une façon générale, se fera sous la forme :

\[R[Name][\{R_1^1, R_4^2, \ldots\}, \{R_2^1, R_2^2, \ldots\}, \ldots] \]

Nom du paramètre \hspace{1cm} Sous Structures souhaitées

Les sous-structures associées à un paramètre de rugosité seront parcourues par récurrence (voir figure I-14) :

\[T[Name][\{R_2^1, R_2^2, R_4^3\}, \{R_2^1, R_2^2\}, \{R_3^1\}] \]

Structure 1 \hspace{1cm} Structure 2 \hspace{1cm} Structure 3

\[R_1^1 \rightarrow R_2^1 \]
\[\ldots \]
\[R_1^3 \rightarrow R_2^2 \rightarrow R_3^1 \]

Figure I-14 : parcours des sous structures d'un paramètre de rugosité

Chaque paramètre de rugosité envisageable est préalablement défini dans MesRug pour vérification de son acceptabilité lors de la lecture du fichier « listing.txt ».

La structure d'un paramètre de rugosité « R » est définie comme suit :

```cpp
// Création de Paramètres
// Paramètre de rugosité R

list<Structure> list_struct_R;
ParamRugosite_R rugo_r("R");

// Paramètre de rugosité S

list<Structure> list_struct_S;
ParamRugosite_S rugo_S("S");
...
```

41
I.5.6. Maintenance du code dans le système MesRug

I.5.6.1. Ecriture et Intégration des nouvelles méthodes de redressement

L’écriture d’une nouvelle méthode de redressement démarre par la création d’un nouveau fichier d’entête. Ce fichier contient uniquement les déclarations liées à la méthode et porte le nom « Redressement_Mt.h », avec Mt le nom de la méthode. Ce fichier peut être copié pour des nouvelles déclarations, cette démarche simplifie l’ajout des nouvelles méthodes et améliore la maintenance du code.

Redressement_Mt.h

```cpp
#ifndef __MT_H__
#define __MT_H__
#include "Global.h"
//déclaration de la classe Redressement_MT
class Redressement_MT : public Redressement {
    public:
        // Constructeur
        Redressement_MT() {}  
        Redressement_MT(string denom) : Redressement(denom) {}  
        Redressement_MT(string denom, list<SousStructure> liststr) :
        Redressement(denom, liststr) {}  
        // Generation
        Redressement_MT* Clone();
        // Methode de redressement du profil entrée en un profil sortie
        void redresse(Profil* pf,list<Profil*>& lsortie);
        protected:
    }
#endif
```

La seconde étape consiste à créer un fichier source qui contient le code du programme de la nouvelle méthode de redressement, et porte le nom « Redressement_Mt.cpp ». Les déclarations de nouvelles méthodes restent identiques, seul le contenu pour définir de nouveaux algorithmes de redressement sera modifié.

Redressement_Mt.cpp

```cpp
#include "Global.h"
Redressement_Mt* Redressement_Mt::Clone()
{
    return (new Redressement_Mt(*this));
}
void Redressement_Mt::redresse(Profil* pf,list<Profil*>& lsortie)
{
```
Chapitre I : Nouveau système d'analyse des états de surface

//Lecture du profil entrée
...
// Création du profils redressé
Profil* sortie = new Profil;
...
// Retour de la liste des profils redressé
lsortie.push_back(sortie);
}

1.5.6.2. Écriture et intégration des nouveaux paramètres de rugosité

L'écriture et l'intégration d'un nouveau paramètre de rugosité dans le système MesRug démarre par la création d'un nouveau fichier d'entête. Ce fichier referme uniquement les déclarations liées au paramètre de rugosité noté ici « R ». Il sera nommé « ParamRugosite_R.h ». Ce fichier peut être recopié pour des nouvelles déclarations, ce qui simplifie l'ajout des nouveaux paramètres et améliore la maintenance du code.

ParamRugosite_R.h

#ifndef __PARAMRUGOSITE_R_H__
#define __PARAMRUGOSITE_R_H__
#include "Global.h"

//déclaration de la classe ParamRugosite_R
class ParamRugosite_R : public ParamRugosite
{
 public:
 // Constructeur
 ParamRugosite_R() {}
 ParamRugosite_R(string denom) : ParamRugosite(denom) {}
 ParamRugosite_R(string denom,list<SousStructure> listsstr) :
 ParamRugosite(denom,listsstr) {}
 // Generation d'un paramètre de rugosité
 ParamRugosite_R* Clone();
 // Méthode de calcul du paramètre de rugosité
 double rugosite(Profil*);
 protected:
};
#endif

La seconde étape consiste à créer un fichier source qui contient le code du programme du nouveau paramètre de rugosité, et porte le nom « ParamRugosite_R.cpp ». Les déclarations de nouveau paramètre restent identiques, seul le contenu pour définir de nouveaux algorithmes du paramètre de rugosité sera modifié.

ParamRugosite_R.cpp

#include "Global.h"
ParamRugosite_R* ParamRugosite_R::Clone()
{ return (new ParamRugosite_R(*this));
}

double ParamRugosite_R::rugosite(Profil* prof)
{
 double rugo;
 // implementation de la méthode du paramètre de rugosité R
 // ...
 rugo = 4.;
 prof->add_rugosite(Rugosite(name,rugo));
 return (rugo);
}

1.5.6.3. Paramètre de rugosité dépendant d’autres paramètres

Dans ce cas de figure, il existe deux possibilités : soit ces paramètres étaient déjà sollicités par
l’utilisateur donc leurs valeurs sont déjà stockées dans la mémoire. Soit ces paramètres ne sont
pas sollicités, il faut donc faire appel à leurs procédures pour calculer leurs valeurs.

En effet, si le paramètre R dépend d’un autre paramètre S, au niveau du fichier
« ParamRugosite_R.cpp » on ajoute les lignes de codes suivants à l’endroit où faire appel au
paramètre S :

double S;
// Dans le cas où le paramètre est déjà sollicité on récupère sa valeur
 sinon S = INFINITY
S = prof->val_rugosite("S");
// si S = INFINITY on fait appel au paramètre S
if (S == INFINITY)
{
 ParamRugosite_S S_tmp("S");
 S = S_tmp.rugosite(prof);
}

1.5.6.4. Paramètres de rugosité dépendant de méthodes lourdes

Pour but d’optimisation et gains de temps de calcul, l’appel de la méthode commune à plusieurs
paramètres se fera une seule fois dans le cas de la sollicitation d’un seul ou plusieurs paramètres.
I.5.7. Communication de la base de données et la structure de traitement

Figure I-15 : communication entre la base de données et la structure de traitement.

I.5.7.1. Connexion via ODBC

Pour pouvoir faire communiquer la base de données et l'application C++ qui représente ici la structure de traitement, on utilise une connexion via ODBC (Open Database connectivity). Voici le détail de cette technologie ainsi que la méthode à suivre pour l'utiliser sur une machine.

I.5.7.1.1. Définition

ODBC est l'abrégé d'Open DataBase Connectivity. Il s'agit d'un format défini par Microsoft permettant la communication entre des clients bases de données fonctionnant sous Windows et les SGBD (système de gestion de base de données).

Le gestionnaire ODBC est présent sur les systèmes Windows. Il existe toutefois des implemantations sur d'autres plates-formes, notamment des plates-formes UNIX/Linux.

Sous Windows XP ou Vista le gestionnaire ODBC est disponible dans le répertoire outils d'administration du panneau de configuration sous l'icône (Figure I-16) suivant:
La technologie ODBC permet d'interfacer de façon standard une application à n'importe quel serveur de base de données, pourvu que celui-ci possède un driver ODBC.

1.5.7.1.2. Inconvénients de la technologie ODBC

Bien qu'ODBC permette un interfaçage avec des bases de données, cette technologie reste une solution propriétaire de Microsoft.

Cela se traduit par une dépendance de la plateforme (ODBC ne fonctionne que sur les plateformes Microsoft Windows). D'autre part, ODBC est fortement lié au langage C++ (utilisation de pointeurs), et ODBC utilise des paramètres non standards, ce qui le rend difficile à mettre en œuvre directement dans les programmes.

1.5.7.1.3. Déclaration de la base de données access

ODBC permet de relier une application à une base de données en déclarant une source de données (correspondant dans notre application à une base de données access) dans le gestionnaire OBDC (Administrateur de source de données ODBC).
Chapitre I : Nouveau système d’analyse des états de surface

Figure I-17 : Fenêtre d’administrateur de sources de données ODBC

Ce gestionnaire montre par défaut la liste de tous les pilotes nécessaires aux applications bases de données Microsoft. Il permet aussi de déclarer le type de données auxquelles il est possible d’accéder et de leur associer un nom. L’onglet sources de données système (Figure I-18) permet de voir la liste des sources de données déjà installées.

Figure I-18 : L’onglet source de données système
Pour déclarer la base de données access portant le nom « Surface.mdb ».

- Installer le pilote ODBC pour la base de données access si celle-ci n’est pas installée par défaut sous l’administrateur de données.

- Établir la liaison ODBC dans l’onglet Sources de données utilisateur de l’administrateur de source de données, en cliquant sur Ajouter... puis en sélectionnant le pilote « Microsoft Access Driver (*.mdb) » dans la fenêtre « créer une nouvelle source de données » (Figure I-19).

![Figure I-19 : Fenêtre de création d’une nouvelle source de données](image)

- L’administrateur de source de données va ensuite demander le nom à affecter à la source de données (Il s’agit du nom par lequel la base de données sera accessible). Dans le cadre de notre application nous avons choisi « Surface » (en référence à l’étude d’états de surface), nom par lequel la base de données sera accessible (voir Figure I-20).
Figure I-20 : fenêtre d’affectation d’un nom à la source de données

- Puis on clique sur Ok, la base de données devient alors accessible (Figure I-21).

Dans le cas général, et suivant les bases de données, la procédure peut varier et des options supplémentaires peuvent-être demandées, mais la configuration de la source de données reste globalement la même.

Figure I-21 : confirmation de la possibilité de connexion à la base de données « surface ».
1.5.7.2. Communication via ADO

ADO (ActiveX Data Objects, ou Objets de données ActiveX), étant basés sur ActiveX, ces objets fonctionnent sur différentes plates-formes et avec différents langages de programmation. Les objets ADO supportent l'accès aux bases de données pour un objet de données local ou distant.

L'utilisation d'ADO avec C++ n'a jamais fait le courant principal de la programmation, c'est pour cette raison qu'il y a peu de documentations sur ce sujet. Mais la programmation avec ADO en C++ est tout aussi simple qu'avec Visual Basic. Il suffit de libérer explicitement le modèle COM (Component Object Model) qui est une plateforme qui permet la communication inter-process et la création d'objets dynamiques et ceci peu importe le langage de développement employé qui supporte la technologie. Et ensuite nous gérons les exceptions et nous travaillons avec les pointeurs C++.

La meilleure façon d'utiliser ADO en C++ est d'utiliser le pointeur créé avec « #import » dans Visual C++.

```c++
#pragma warning(disable:6001)
import "c:\Program Files\fichiers communs\System\ADO\msadlo5.dll" \
   rename("EOF", "EndOfFile")

#pragma warning(restore)
import "c:\Program Files\fichiers communs\System\ADO\MSJRO.DLL"
no_namespace
```

Ceci élimine l'une de nos préoccupations au sujet de C++ qui est de libérer explicitement l'objet COM.

Pour assurer la communication avec la base de données « surface » nous commençons par créer un objet de connexion.

```c++
char CnnStr[200] = "DSN=Surface;DBQ=surface.mdb;DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;UID=admin;";
char ErrStr[200];

//initialisation de l'interface COM (Component Object Model)
::CoInitialize(NULL);
Database db;
Table tbl;
```
Chapitre I : Nouveau système d'analyse des états de surface

if(!db.Open("lab","cse-98",CnnStr))
{
 db.GetErrorErrStr(ErrStr);
 cout<<ErrStr<<"\n";
}

Maintenant que l'objet de connexion est créé, il est possible de procéder à des jeux de lecture, création, suppression et d'enregistrement, en utilisant SQL ("Structured Query Language") qui est un langage informatique destiné à cet effet.

Par exemples :

Pour supprimer une table qui se nomme par exemple « Table_Sortie »

if(!db.OpenTbl(ADO.DB::adCmdText,"DROP TABLE Table_Sortie",tbl))
{
 db.GetErrorErrStr(ErrStr);
 ErrStr;
}

Pour ajouter une nouvelle colonne « Longueur_Evaluation » dans la table « Table_Sortie ».

string requete = "ALTER TABLE Table_Sortie ADD Longueur_Evaluation DOUBLE NULL;"
size_t size;
char * buffer;
size = requete.size() + 1;
buffer = new char[size];
strncpy(buffer, requete.c_str(), size);
if(!db.Execute(buffer,tbl))
{
 db.GetErrorErrStr(ErrStr);
 cout<<ErrStr<<"\n";
}

Pour enregistrer des données dans une table une ligne à la fois la requête se fera sous la forme :

string requete = "ALTER INSERT INTO "nom de table" ("colonne 1", "colonne 2", ...) VALUES ("valeur 1", "valeur 2", ...)");

Au final une fois qu'on a géré la complexité accrue par l'architecture globale de MesRug, on peut lancer l'application C++ qui pourra questionner la base de données sur les profils de rugosité à traiter et le fichier « listing.txt » sur les méthodes à utiliser ainsi que les paramètres de rugosité à calculer, puis procéder à ces traitements et calculs, et enfin enregistrer les résultats dans la base de données.

Nous pouvons observer sur la figure I-22 un exemple des résultats obtenus.
<table>
<thead>
<tr>
<th>Coupé</th>
<th>série</th>
<th>Niveau</th>
<th>Fichier</th>
<th>Référence</th>
<th>Fichier_Du_Mont</th>
<th>Fichier_Série</th>
<th>longueur_Finh_Finh_Finh</th>
<th>largeur_pau</th>
<th>ligne_gau</th>
<th>ligne_gauche</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A1</td>
<td>A1_C</td>
<td>A1_C</td>
<td>A1_C</td>
<td>76178</td>
<td>78178</td>
<td>78178</td>
<td>78178</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure I-22 : exemple d’une table finale obtenue après des prétraitements et calculs de paramètres de rugosité
I.6. Traitement statistique

Figure I-23 : traitement statistique

L'idée suivie lors de la construction de MesRug est de permettre un interfaçage avec les logiciels existants, tout en gardant la possibilité de s'ouvrir sur des routines basées sur un principe d'open source.

Les traitements statistiques sont effectués sous le langage SASTM (Statistical Analyses System), qui est sans doute le logiciel de traitement de données le plus complet, sinon le plus répandu, du moins celui qui traite quotidiennement le plus gros volume de données. Il dispose d'un très large éventail de traitements permettant d'assurer toutes les fonctions de gestion de données ainsi que des outils graphiques. Il permet la programmation de la méthode Bootstrap pour la recherche des paramètres pertinents.

I.6.1. Méthodes statistiques

Dans cette partie, nous présentons deux méthodes mathématiques de recherche de paramètres influents qui respectent les conditions évoquées précédemment. Nous avions postulé qu'une
Chapitre I : Nouveau système d'analyse des états de surface

méthode de recherche des paramètres influents devait être robuste. Le nombre important de paramètres à tester interdit l'utilisation d'une analyse statistique individuelle et de vérifier les hypothèses de l'influence statistique de l'analyse de données. Pour ces raisons, une technique très récente d'analyse de données connue sous le nom de Bootstrap sera utilisée. Cette approche permet de donner un nouveau regard sur l'analyse de la variance et de déterminer la pertinence des paramètres répartie en classe. Cette technique sera utilisée pour rechercher le paramètre qui donne la meilleure corrélation avec un processus physique. Ces méthodes seront systématiquement utilisées dans les études de rugosité et permettront en outre de déterminer objectivement la pertinence d'un paramètre de rugosité.

1.6.2. Le bootstrap

La méthode du bootstrap, due à Efron, a été créée en 1979. Le principe consiste à effectuer un suréchantillonnage des données et utiliser la puissance des ordinateurs pour calculer un grand nombre de fois l'estimateur de base de la statistique recherchée. Cette méthode est à la statistique mathématique ce que la méthode de Monte Carlo est à la physique de la diffusion. Efron, biostatisticien, a créé cette méthode (nous pourrions même dire « méthodologie », car le sur-échantillonnage est une technique pour concevoir des méthodes d'analyse), pour interpréter des données qui violaient les hypothèses de l'influence statistique. Depuis 1985, la bibliographie statistique sur le sur-échantillonnage ne cesse de croître et cette technique pourrait devenir la méthode d'analyse statistique du futur. Cependant, bien que Efron ait fait un effort considérable de vulgarisation, les articles actuels demeurent très hermétiques aux novices et servent surtout à développer un fondement mathématique à cette nouvelle approche. Les premiers livres synthétisant l'état d'avancement du sur-échantillonnage, sont dus à Hall et à Shao et Tu. Le principe du sur-échantillonnage consiste à extraire un échantillon à partir de la série de données initiale et à construire une statistique sur cet échantillon, puis reproduire cette statistique un grand nombre de fois pour analyser le comportement de la série initiale. La difficulté majeure de
l'utilisation de cette technique est de ne pas « oublier » que ces données ne sont que des répliques et qu'elles n'ont pas la même crédibilité que les données initiales. En ce sens, « bootstraper » demande une certaine connaissance de la statistique pour éviter cet écueil. De plus, il est nécessaire de posséder des bases solides en informatique car il n'existe aucun logiciel informatique commercialisé.

Ecrire un sur-échantillonnage revient à appeler un grand nombre de fois une procédure de la statistique, ce qui requiert une optimisation numérique importante au contraire des routines de logiciel de statistique prévues pour n'être appelées qu'une seule fois. Quels sont donc les avantages escomptés d'une telle méthode ? D'après la bibliographie, ce sont les suivants :

1) Suppression des hypothèses statistiques : il n'est plus nécessaire de supposer que les données suivent une densité précise (fait pratiquement impossible à vérifier). En Science des Matériaux, de nombreuses données ne suivent pas une loi gaussienne ce qui rend les traitements statistiques très délicats. Par exemple, nous avons appliqué cette méthode pour isoler les trois modes de propagation de fissure d'un essai de fatigue fissuration. Dans ce cas, il n'est plus nécessaire de supposer que le résidu autour de la « loi » de Paris (annexe D) vérifie une loi log-normale.

2) Réduction de biais : le biais statistique est un artefact redoutable en Science des Matériaux. Il signifie simplement que la valeur estimée d'après les données n'est pas la vraie valeur en moyenne. Le biais le plus perfide est celui obtenu sur la régression linéaire dû au non respect des hypothèses de Gauss Markov (qui ne sont d'ailleurs que rarement respectées). En effet, la valeur du biais statistique peut dépendre du nombre de données, de leursdispersions, de l'intervalle d'étude, etc... Or, il est d'usage très courant en Science des Matériaux, d'utiliser les coefficients issus d'une régression pour caractériser le comportement d'un matériau (module de Young, coefficients de la loi de Paris (annexe D), dimension fractale, coefficient d'écrouissage, dureté intrinsèque, etc...). Si l'une des causes expérimentales responsable du biais varie pendant différents essais, il est possible de trouver une corrélation très marquée avec un phénomène.
physique alors qu’il n’y a pas corrélation. Pire, la corrélation risque d’être plus pertinente statistiquement que si elle existait physiquement.

3) Construction d’estimateurs par développement asymptotique des résultats sur-échantillonnés.

Nous ajouterons à la bibliographie les avantages suivants :

4) Visualisation des données : comme le sur-échantillonnage permet de générer un grand nombre de simulations, il devient aisé de construire une application graphique pour percevoir des tendances dans les données initiales.

5) Tests de robustesse des modèles analytiques ou numériques : comme le sur-échantillonnage crée une banque de données de valeurs possibles de la statistique recherchée, il est possible d’introduire ces valeurs dans un modèle pour tester les répercussions numériques de ces incertitudes. Par exemple, supposons que l’on ait calculé par sur-échantillonnage le coefficient \(n \) de la loi d’écrouissage de Ludwig et que ce coefficient soit utilisé pour une modélisation d’emboutissage par éléments finis. Il devient possible d’introduire un certain nombre de ces coefficients simulés pour tester l’influence de la variation expérimentale sur les résultats modélisés. Nous avons utilisé une méthode similaire pour tester l’influence des erreurs de mesure de température sur la prédiction des températures de recristallisation d’acier doux.

I.6.3. Quelques méthodes développées

La géométrie des surfaces est caractérisée par plus d’une centaine de paramètres. Ce travail nous a amené à construire trois applications informatiques originales de sur-échantillonnage permettant de traiter la majorité des études présentées.

Analyse de la variance sur-échantillonnée : Un système physique est souvent décrit par plusieurs paramètres d’entrée et fournit souvent une multitude de paramètres de sortie. Pour résoudre ce problème, nous utilisons une extension de la méthode d’analyse de la variance (ANOVA). Le problème est formulé en ces termes : Parmi \(n \) paramètres, \(k \) mesures sont faites sur \(p \) échantillons.

Quel est donc le paramètre qui discrimine au mieux les \(p \) échantillons ?

56
Analyse des corrélations linéaires sur-échantillonnées : Cette méthode s'applique dans de nombreux cas rencontrés en Science des Matériaux. Elle peut se résumer en ces termes. Comment corrélérer un phénomène physique (quantifié numériquement) avec les paramètres de caractérisation de surface mesurés sur plusieurs échantillons quand P mesures de ce phénomène physique et Q mesures de caractérisation de surface sont effectuées sur chaque échantillon ?

Analyse discriminante sur-échantillonnée : Elle peut se résumer en ces termes. Comment peut-on classer des surfaces en relation avec un phénomène physique (quantifié numériquement) avec plus d'un paramètre de rugosité mesurés sur plusieurs échantillons.

I.7. Problèmes à traiter non prévus

Dans le cadre de cette thèse nous ne traitons que le cas 2D, alors que les mesures faites par certains appareils de mesure comme le rugosimètre interférométrique ou AFM sont en 3D. Nous avons pensé à une transformation de 3D vers 2D pour simplifier les calculs et les traitements. Mais avant d'aborder ce problème, nous avons remarqué qu'il y a un manque d'information sur certains points ou zones des surfaces mesurées codé par « NaN » (not a number) ou valeurs anormalement très élevées, que nous appellerons valeurs manquantes.

I.7.1. Valeurs manquantes

Pour résoudre le problème des valeurs manquantes sans s'éloigner des objectifs de cette thèse, mais tout en ouvrant des perspectives vers des recherches plus approfondies, nous avons utilisé différents algorithmes existants et peu nombreux. Nous citons par exemples :

- L'algorithme « fillnans » qui utilise la pondération inverse à la distance (PID) qui est une méthode d'interpolation spatiale, qui permet d'assigner une valeur à un espace non connu à partir d'un semis de point connus.
- L'algorithme « fillmiss » où les valeurs manquantes sont calculées comme la somme pondérée des interpolations linéaires à partir de points le plus proche disponible.

- L'algorithme « BPCA » (Bayesian Principal Components Analysis) qui est une méthode statistique utilisée dans l'analyse de données numériques.

Nous présentons ici quelques résultats obtenus après application de ces algorithmes (Figures I-24, I-25, I-26).

Figure I-24 : surface originale avec des points non mesurés (Blanc)
Figure I-25 : Surface rebouchée après application de l’algorithme fillmiss

Figure I-26 : Surface rebouchée après application de l’algorithme SFRAA
Chapitre I : Nouveau système d'analyse des états de surface

Pour s'assurer de la validité de ces algorithmes ainsi que ceux qui peuvent être développés dans le futur, ces algorithmes devront reproduire les mêmes caractéristiques d'une surface d'une façon proche voir exacte, de son état initial.

Dans ce but nous avons développé un algorithme qui nous permet à partir d'une surface dont nous connaissons les caractéristiques, d'augmenter le nombre des valeurs manquantes en fonction de l'angle critique sur lequel est basé toute mesure expérimentale. La figure I-27 nous permet d'observer ce processus. Puis appliquer les algorithmes de rebouchage sur ces nouvelles surfaces.

Avec cette démarche nous pensons pouvoir adapter l'algorithme de rebouchage idéal à la surface étudiée.

Surface original

Angle critique égale à 60° Angle critique égale à 50°
Figure 1-27 : Résultats obtenus après l’application d’un algorithme pour augmenter le nombre de valeurs manquantes en fonction de l’angle critique.

I.7.2. Transformation 3D vers 2D

Pour les raisons évoquées précédemment, cette transformation devrait être faite de différentes manières, ce qui nous permettra d’un côté de s’assurer de la validité de nos algorithmes, et de l’autre côté de pouvoir étudier la surface à différentes échelles. L’intérêt de ces différents
algorithmes est de préserver ni la distance, ni la corrélation entre les profils de la surface, ce qui nous permettrait d'observer et d'étudier les différences entre les différents algorithmes.

En effet, une surface mesurée peut être présentée sous la forme matricielle suivante :

\[
M = \begin{pmatrix}
 a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
 a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}
\]

On peut imaginer différents modes de lecture de cette matrice. Nous proposons quelques algorithmes développés dans ce sens, que nous illustrons par un exemple.

On considère la matrice suivante :

\[
\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 \\
 7 & 8 & 9 & 10 & 11 & 12 \\
 13 & 14 & 15 & 16 & 17 & 18 \\
 19 & 20 & 21 & 22 & 23 & 24 \\
 25 & 26 & 27 & 28 & 29 & 30
\end{pmatrix}
\]

On nomme :

- « Hori(n) » l'algorithme qui parcourt la matrice dans le sens horizontal.
- « Vert(n) » l'algorithme qui représente une lecture dans le sens vertical.
- « Esca(n) » l'algorithme qui pour but de parcourir la matrice à partir d'un point donné (position de la cellule) en tournant autour comme un escargot.

Avec n le numéro de cet algorithme.
Remarque :

- L'algorithme « Hori(4) » à pour but de parcourir la matrice en suivant les lignes paires suivi des lignes impaires ou l'inverse suivant le nombre de lignes de la matrice d'origine.
- L'algorithme « Hori(5) » = L'algorithme « Hori(4) » + L'algorithme « Hori(1) ».
- De même pour les algorithmes dont on parcourt la matrice dans le sens vertical.

I.7.3. Taille limite de la base de données access

L'un des problèmes qu'un utilisateur peut rencontrer dans le cas des calculs très volumineux serait la taille du fichier de la table finale dans la base de données Access qui est limitée à 2 gigaoctets (Go). Ce problème est signalé par le message d'erreur « Argument non valide ».

Pour contourner ce problème, la taille de base de données est réduite au début de l'exécution de l'application C++ de MesRug par les lignes de code suivant :
// compacter la base de données access au début de l'opération
try
{
 JET::CoInitialize(0);
 IJetEnginePtr jet(__uuidof(JetEngine));
 jet->CompactDatabase("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=surface.mdb", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=surface1.mdb;Jet OLEDB:Engine Type=5");
 JET::CoUninitialize();
 remove("surface.mdb");
 rename("surface1.mdb","surface.mdb");
}
catch(_com_error &e)
{
 e.Description();
}

Cela nous permet de profiter de la taille maximale de la base de données à chaque nouvelle utilisation.

Dans le cas où le calcul demande une taille beaucoup plus importante, le principe de batch sera appliqué. Cela signifie que l'on divise notre travail et que l'on démarre un traitement par lot.
Chapitre II

Caractérisation multi-échelle de l’usinabilité de l’acier AISI 304

Après avoir décrit dans le chapitre précédent les fondements mathématiques et informatiques des traitements de surface, nous proposons maintenant d’appliquer notre méthodologie à une étude de cas issus de procédés de fabrication. Nous allons dans cette étude employer la caractérisation multi-échelle à des surfaces usinées par chariotage et dressage et ceci par deux conditions de coupe différente. Nous avons retenu de traiter l’analyse multi-échelle par filtrage gaussien de part la nature périodique des surfaces étudiées.
II.1. Introduction

Les profils de pièces usinées peuvent présenter trois domaines de fréquences : interaction outils-matières, conditions de coupe et ondulation induite souvent par un manque de rigidité du système. En fonction des propriétés d’usage recherchées, un domaine de fréquence peut être privilégié. Par exemple, dans le cas de l’intégrité d’une structure soumise à des sollicitations, l’état de surface joue un rôle primordial et demeure souvent concentré sur le premier domaine fréquentiel. Dans le cas de décollements de couches limites, les mécanismes d’interactions entre la surface et le fluide sont principalement observés sur le deuxième domaine de fréquence. Finalement dans le cas de dimensionnement de la pièce où une bonne planéité est recherchée, la morphologie de surface est pertinente sur le troisième domaine de fréquence. Dans ce papier, nous nous limiterons à aborder le rôle des paramètres de fabrication sans aborder la fonctionnalité des pièces usinées (tenue en fatigue, contraintes résiduelles, ...).

II.2. Procédure suivie

Pour caractériser la pièce usinée par une analyse multi-échelle, et déterminer ainsi des échelles caractéristiques d’interaction en fonction des données process, un logiciel d’analyse d’état de surfaces, ME®RUG a été développé au sein d’un consortium de laboratoires français. Ce système informatique permet le prétraitement des profils avec différentes méthodes numériques normalisées ou non (polynomiale, B-spline, ondelette…) et le calcul de 108 paramètres de rugosité (paramètres d’amplitude, de fréquence, hybrides, fractals, portance,…).

Pour cette étude, nous avons choisi d’intégrer dans le système ME®RUG un filtre numérique normalisé ISO 11562-1996 sur la fréquence imposée par la norme et extensible sur d’autres longueurs de coupures (cut-off). Par des techniques statistiques adaptées, le domaine de fréquence pertinent vis-à-vis de chaque condition du procédé d’usinage est déterminé.

II.3. Matériaux et procédure expérimentales

Dans cette étude, nous étudions l’usinabilité de l’acier inoxydable austénitique 304 L.

Les conditions d’usinage choisies ont suivies le plan d’expériences suivant (Table II-1):

<table>
<thead>
<tr>
<th>Réf</th>
<th>Vc(m/mn)</th>
<th>Fn(mm/t)</th>
<th>Ap(mm)</th>
<th>Usinage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>170</td>
<td>0,1</td>
<td>0,3</td>
<td>Chariotage</td>
</tr>
<tr>
<td>A</td>
<td>170</td>
<td>0,1</td>
<td>0,3</td>
<td>Dressage</td>
</tr>
<tr>
<td>B</td>
<td>270</td>
<td>0,4</td>
<td>0,9</td>
<td>Chariotage</td>
</tr>
<tr>
<td>B</td>
<td>270</td>
<td>0,4</td>
<td>0,9</td>
<td>Dressage</td>
</tr>
</tbody>
</table>

Table II-1 : Plan d’expérience des conditions d’usinage (Vc : vitesse de coupe en m/mm, Fn : l’avance par tour en mm/t, Ap : la profondeur de passe en mm).

Avant l’opération de finition, les éprouvettes ont subi une hypertonpe à 1050°C pendant une heure.

II.4. Mesure

Pour étudier les caractéristiques de rugosité des échantillons, un profilomètre TENCOR P10 a été utilisé et 40 mesures ont été réalisées sur 8 mm par échantillon, correspondant à 80000 points de mesures (pas d’échantillonnage de 0,1 μm) (Figure II-1). Au total, 160 (4 échantillons * 40 mesures) profils sont traités dans cette étude. Un interféromètre VEECO (NI9800™) (Figure II-2) a permis de mesurer la topographie tridimensionnelle.

<table>
<thead>
<tr>
<th>Réf</th>
<th>Chariotage</th>
<th>Dressage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>![Chart A]</td>
<td>![Chart B]</td>
</tr>
</tbody>
</table>
Figure II-1 : Profils obtenues par un profilomètre 2D (TENCOR P10) de l’acier 304L.

Figure II-2 : Surfaces obtenues par analyse interférométrique de l’acier 304L.

Nous allons nous intéresser dans le cadre de cette étude aux profils 2D pour déterminer les caractéristiques multi-échelles de l’usinabilité de l’acier 304L. Le filtrage multi-échelle sera, dans cette étude, effectué par un filtrage gaussien.
II.5. Filtrage multi-échelle

Cette démarche nous conduit à construire un filtre numérique qui respecte la norme ISO. Dans notre analyse, nous allons faire varier la fréquence de coupure du filtre afin d’analyser les profils filtrés à ces fréquences. En fonction de la résolution fréquentielle recherchée par cette analyse multi-échelle, de nombreux filtrages seront à effectuer. Pour cette raison, nous avons décidé d’utiliser une approximation du filtre gaussien. Cette approximation consiste à lisser la courbe gaussienne par une fonction sinus cardinal élevée à une puissance entière fixée préalablement. Ce filtre a été adapté afin de choisir son ordre. Cette démarche a été précédemment présentée par Vorburger [YUAN 2000]. Il est apparu, par une analyse fréquentielle des profils de cette étude que l’ordre 8 était suffisant pour garantir un filtrage homogène. L’implémentation numérique de ce filtre gaussien « approximé » a permis de réduire les temps de calculs de nos analyses multi-échelle d’un facteur 1000 par rapport au filtre gaussien non approximé.

La figure II-3 représente un exemple de profil filtré passe haut et passe bas pour différents cut-off. Afin d’effectuer l’analyse multi-échelle, un intervalle de cut-off est choisi ([1-2500 μm] sur lequel un filtrage passe haut et passe bas est appliqué sur chaque profil. Pour un profil, nous obtenons donc 2 séries de profils à savoir d’ondulation (filtre passe bas) et de rugosité (filtre passe haut). Sur chaque profil filtré, Le Ra ainsi qu’un ensemble d’autres paramètres sont calculés. Cette opération est reconduite sur la totalité des 160 profils. Il est alors possible de calculer la valeur moyenne de la rugosité pour chaque configuration du plan d’expérience (4 configurations) et de tracer la valeur du Ra moyen en fonction de la fréquence de coupure pour le filtrage passe haut et passe bas et ceci pour les quatre configurations du plan d’expériences. La figure II-4 montre l’évolution du paramètre Ra en fonction de cut-off, sur un filtre passe haut (figure II-4-a), puis sur un filtre passe bas (figure II-4-b). On remarque pour un filtrage passe haut que la valeur du paramètre Ra augmente. Cette croissance est plus accentuée pour les échantillons de référence B et reste identique pour un usinage avec chariotage ou dressage. Pour
un filtrage passe bas, la valeur de R_a décroit et on remarque une forte différence de la valeur de R_a entre un chariotage et un dressage.
Figure II-3 : Exemple de filtrage multi-échelle passe bas et passe haut avec un cut-off qui varie entre 10 et 2500 µm

Pour mettre en évidence l'influence de cut-off sur la pertinence des paramètres de rugosité, on procède à une analyse de la variance « bootstrapée » ([BIGERELLE 2003], [NAJJAR 2006]a). Cette méthode couple l'analyse de variance et une technique de suréchantillonnage récente connue sous le nom de bootstrap. L'analyse de variance permet de tester l'effet d'un facteur prenant un nombre fini de modalités. On considère qu'un facteur a un effet significatif si le rapport pondéré de la variance expliquée à la variance résiduelle, noté F, est grand par rapport aux quantiles d'une loi de Fischer. Le paramètre F sera utilisé comme mesure discriminante de la pertinence du paramètre de rugosité donné. Il permet ainsi un classement suivant une échelle de
pertinence. Cependant, les variations expérimentales des mesures de rugosité engendrent une variation sur ce paramètre F supposé constant dans l'analyse de variance classique. La technique du bootstrap permet de palier cette limite en introduisant une variabilité sur F.

Figure II-5 : Analyse statistique de la pertinence du paramètre de rugosité Ra avec 10 bootstrap.
Figure II-6 : Analyse statistique de la pertinence de l’ensemble des paramètres de avec 10 bootstrap.

La pertinence des paramètres de rugosité Ra est illustrée par la figure II-5 après cette analyse statistique avec 10 bootstraps. La valeur maximale du F pour les paramètres du procédé et leur interaction et ceci pour les filtrages passe haut et passe bas nous permet donc de déterminer la fréquence optimale de coupure du filtre où le Ra est le plus pertinent par rapport à l’ensemble des paramètres (Figure II-6). Ainsi, les conditions de coupe sont bien caractérisées sur un filtrage passe haut de 0.8 mm.

Il ressort que le paramètre Ra sur un filtrage passe haut d’une longueur de coupure égale à 764 µm caractérise le mieux la coupe, alors que le paramètre Sm (pas moyen des irrégularités du profil) sur un filtrage passe haut de 60 µm caractérise le mode d’usinage (dressage ou chariotage).

Nous montrons dans la Table II-2 les résultats de cette analyse. On observe une interaction forte à très faible échelle entre les conditions de coupe et le type d’usinage pour le paramètre Ra.
Chapitre II : Caractérisation multi-échelle de l'usinabilité de l'acier AISI 304

<table>
<thead>
<tr>
<th>Cut-off</th>
<th>Filtre</th>
<th>Paramètre</th>
<th>Process</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>764</td>
<td>passe-haut</td>
<td>Ra</td>
<td>Coupe</td>
<td>2594913</td>
</tr>
<tr>
<td>13</td>
<td>passe-haut</td>
<td>Ra</td>
<td>Coupe*Usinage</td>
<td>7688</td>
</tr>
<tr>
<td>60</td>
<td>passe-haut</td>
<td>Sm</td>
<td>Usinage</td>
<td>10157</td>
</tr>
</tbody>
</table>

Table II-2 : Paramètres les plus pertinents

Suite à cette analyse, il est alors possible de tracer l'évolution du paramètre retenu pour un type de filtre (passe-haut ou passe bas). Pour l'effet « conditions de coupe », (Figure II-7), le maximum de pertinence est situé à 764 µm ce qui est proche de la norme ISO habituellement utilisée qui est de 0.8 mm quelque soient les conditions de coupe. Notre méthode nous permet donc de retrouver pour les conditions de coupe, le Ra le plus pertinent à l'échelle de filtrage proche de celle utilisée par les usineurs et fixé par la norme.

Figure II-7 : Effet des conditions de coupe
Pour l’effet d’interaction entre la coupe et l’usinage (Figure II-8), les échelles de pertinence se situent sur la haute fréquence (13 µm) caractérisée par le paramètre Ra. Cependant, ce paramètre ne permet pas de détecter les effets entre un chariotage et un dressage.

Figure II-8 : Interaction coupe usinage

Pour l’effet usinage, la différence entre chariotage et dressage est caractérisée par le paramètre Sm (écart entre les aspérités). En effet le dressage induit un écart entre les stries plus prononcées que le chariotage mais à une petite échelle (Figure II-9). A noter que la tendance est inversée aux grandes échelles (forme). A l’échelle de 60 µm on voit l’interaction outil matière pour des conditions de coupe sur le dressage.
II.7. Conclusion

L’analyse multi-échelle a permis de déterminer que les conditions de coupe sont bien caractérisées par le Ra sur le filtrage passe haut de 0,8 mm et ce résultat est conforme à la norme ISO 11562-1996. Par contre, pour détecter les effets entre un chariotage et dressage, il est nécessaire de rechercher des échelles fines (60 µm) caractéristiques de l’interaction outil-matière. A cette échelle, les écart entre les aspérités caractérisent la différence de morphologie. Le dressage engendre un Sm de 25 µm alors que le chariotage induit un Sm deux fois plus faible (13 µm). La composante curviligne de la coupe en chariotage engendre une surface moins tourmentée à cette échelle que la coupe plane obtenue en dressage.
Chapitre III

Echelles caractéristiques de l'usinage de super finition par abrasion

Comme il a été montré dans les chapitres précédents, la clé de voute du système informatique que nous développons est l'analyse multi-échelle. Nous avons démontré qu'un filtrage gaussien permettait de trouver l'échelle à laquelle la signature de l'usinage était présente.

Nous allons nous intéresser maintenant à un autre usinage : l'usinage de super finition par abrasion. Ce procédé utilise l'interaction du papier abrasif comme matériau pour polir la surface en préservant son intégrité. Ces processus d'abrasion sont souvent par essence multi-échelles. Plus particulièrement, il est compréhensible qu'il y ait localement un cumul des endommagements donnant lieu à un croisement des pics ou des vallées de rugosité. Dans cette optique, nous allons donc étudier les aspects multi-échelles de la rugosité.

Après avoir souligné que les surfaces abrasives possèdent des structures multi-échelles, nous allons chercher une loi adaptée permettant de calculer les amplitudes des pics et vallées à l'aide d'une analyse multi-échelle. Les rugosités extrêmes suivent une loi multi-échelle, plus précisément trois stades : le premier stade est inférieur à 4 µm ; il correspond à l'effet de lissage par la pointe du palpeur de rugosimètre tactile. Le second stade, compris entre 4 µm et 350 µm, représente le stade fractal. Il est montré que ce stade ne suit pas la loi puissance rencontrée habituellement. Il reste a montré que les écarts à la loi puissance ne sont dus qu'à un problème d'échantillonnage. A
Chapitre III : Échelles caractéristiques de l'usinage de super finition par abrasion

l'aide d'un mouvement brownien, nous montrons que si le nombre de points est constant dans la fenêtre spatiale (quelque soit sa longueur) alors une parfaite loi puissance est trouvée. Ceci peut s'expliquer simplement : si nous sommes à pas d'échantillonnage constant alors le nombre de points augmente proportionnellement avec la longueur de la fenêtre d'évaluation. Supposons que la rugosité est inchangée à toutes les échelles (bruit blanc), alors la probabilité de rencontrer une grande valeur sera plus importante sur une grande longueur que sur une petite longueur. Ceci explique les écarts sur la non-linéarité de la loi rencontrée. Quant le process fractal prend fin, les valeurs des pics et vallées ne suivent plus la loi puissance. On constate une croissance, moins accentuée que dans le régime fractal des pics et vallées. Ce régime fractal est régis par la théorie des valeurs extrêmes : ceci signifie que les pics et vallées deviennent indépendants entre eux, mais que le process d'abrasion fait qu'un cumul d'endommagement peut conduire à un pic ou une vallée important. Il devient alors évident que cette probabilité croît avec la longueur. Nous avons modélisé à l'aide de fonctions statistiques à 4 paramètres la densité des paramètres pics et vallées et ce pour une échelle spatiale fixée. Notre modèle permet de prédire la probabilité de rencontrer un pic ou une vallée plus importante sur une échelle plus grande. Cette étude trouve des applications dans le domaine de l'endommagement et la mécanique de contact, la fatigue, ... où l'amplitude maximale et minimale jouent un rôle majeur dans l'intégrité des surfaces.
III.1. Introduction

Techniques of high precision machining have made important progresses in the last thirty years. Surface topography obtained by high precision machining plays a major role in term of surface functionality. To characterize the surface roughness, a high number of roughness parameters may be used ([WHITEHOUSE 1994]; [NAJJAR 2003]). One of the most common parameter is the R_s parameter which represents the average roughness amplitude. Although this parameter is highly robust from a statistical point of view, it fails to represent the extreme values of the surface topography.

High peaks or deep valleys are not sufficiently characterized by this parameter. However, in a high number of surface functionalities and integrities, the maximal roughness amplitude is of major interest (called R_p, PV or R_z roughness parameter). The transient behaviour of super-finished surfaces has been examined by Malkin and coworkers ([PUTHANANGADY 1995]; [VARGHESE 1995]). They found that the radial stock removal during the transient stage is approximately equal to the average peak-to-valley (PV is another definition of the R_p parameter) surface roughness of the initial ground surface. Chang et al. ([CHANG 2008]) have used the R_s parameter to investigate effect of process parameters on evolution of super-finished surfaces texture obtained by stone super-finishing of hardened AISI 8119 steel. The maximal amplitude is of major interest to characterize the surface defects in the case of optical elements obtained by grinding and lapping processes. All these defects have an effect on the stresses that induce fractures, scratches and micro-cracks that influence operational life, secular stability operational life, secular stability, coating quality and transmission performance ([SHEN 2005]; [FINE 2005]; [STOLZ 2005]; [REETHERFORD 2001]; [CAMPBELL 2004]). Experimental results suggest a linear correlation between SSD (sub surface damage) depth and R_s with a proportionality constant. Values of the proportionality constant have been documented by researchers for various materials: glass [HED
1987), marble crystal and ruby [RANDI 2005], fused silica [MILLER 2005]. This linear relation was explained and modelled by Miller et al. ([MILLER 2005]) by applying micro-indentation mechanics and built models for the SSD/surface roughness ratio based on the indentation of sharp and spherical indenters, with respect to material mechanical properties, shape and load of abrasive grains. However, a new model was created by Li et al. ([LI 2008]), investigating median and lateral crack systems in brittle surface induced by a sharp indenter, and the contribution of the elastic stress field to the median crack propagation. Finally, subsurface damage depth can be predicted accurately by measuring surface roughness of grinded or lapped optical elements: it exists a non-linear monotone increasing correlation between subsurface damage depth and surface roughness (R_{q} value). When surface micro-geometry has a significant effect on the local fluctuations in film thickness and pressure, the R_{q} parameter is important to characterize the mixed regime of micro-elastohydrodynamic and boundary lubrication. These mechanisms are believed to govern most surface failures, such as excessive wear, pitting and scuffing ([SPIKES 2002]; [CHANG 1995]; [CHENG 2002]). Kroukka et al. ([KRUPKA 2008]) show that changes in the film thickness profiles are more complex in comparison with the case of the isolated artificially produced roughness features (like grooves of various depths, larger or smaller pits and peaks that are located within a concentrated contact). Conversely, peaks disturb the lubricant flow in the contact inlet zone: reduced film thickness area propagates upstream or downstream depending on the slide-to-roll ratio conditions. In the case of electrotheological fluid-assisted polishing, the roughness of the polished surface is characterized by R_{q} as a function of the applied voltage, the rotational speed of the tool, the rotational speed of the workpiece, a mixing ratio and machining time [ZHANGA 2005]. In fact, the use of the R_{q} parameter is justified by a model proposed by Jha and Jain ([JHA 2006]; [DAS 2008]) based on local peaks erosion. This is confirmed by a study made by Yamaguchi and Shinmura ([YAMAGUSHI 1999]): the observed surface texture shows that the process is an accumulation of the micro-scratches from the abrasive cutting edges,
generating a characteristic magnetic abrasive finished surface. Moreover, the surface is finished by removing the material from not only the peaks but also the valleys of the surface, as far as the cutting edges of the magnetic abrasive are introduced into the valleys. A same class of peak removal algorithms is also applied on belt finishing process by Bigerelle et al. ([BIGERELLE 2008] and to model abrasive flow machining by Wani and Jain ([WANI 2007]; [JAIN 1999])). A mathematical model is presented by El-Axira et al. ([EL-AXIRA 2008]) to predict the R_t parameter caused by internal ball burnishing process parameters (burnishing speed, feed, depth of penetration, and number of passes). Considering the grinding of hard steel to obtain a quality optical surface, Stephenson et al. ([STEPHENSON 2001]) show that the presence of voids is responsible of a relatively high R_t. In the particular case of the abrasive finishing, Grzesik et al. ([GRZESIK 2007]) show that the SRz (peak-to-valley height in 3D measurement) and its two components SRp (maximum peak height) and SRv (maximum valley depth) are relevant to characterize surface topography and prove that an elastic belt modifies both valleys and peaks of the surface, whereas a rigid abrasive stone is only able to change the configuration of the peaks.

Another processes of super-finishing require R_t to quantify the surface integrity like lapping ([BRINKSMEIER 2006]; [BELKHIR 2007]), surface finishing with flexible abrasive tools ([CHO 2002]; [SINGH 2005]), finishing milling of complex surface ([RAMOS 2003]), ultrasonic vibration assisted polishing machine ([SUZUKI 2006]), flat end milled surface ([RYUA 2006]). Some recent studies show that abrasion processes create a multi-scale roughness structure, i.e. the value of roughness will depend on the scale at which it is observed. Bigerelle et al. ([BIGERELLE 2005a]) show that grinding surface can be modelled by fractal function that is confirmed experimentally on polishing surfaces ([DALLA COSTA 2007]; [GILJEAN 2007], [GILJEAN 2008]). Wang and Hu ([WANG 2005]) used multi-scale analyses on the inner surface finishing of tubing by magnetic abrasive finishing. They showed that finishing parameters such as polishing speed, magnetic abrasive supply, abrasive material, magnetic abrasive manufacturing process and grain
size have critical effects on the material removal rate and the changes of structure of microshape of the surface during finishing. Takaya et al. ([TAKAYA 2006]) analysed the surface finishing of a micropart made of single-crystal silicon and proved that surface roughness gets a spatial wavelength range from 1 μm to 10nm.

All theses studies show that the peak-to-valley parameter is of major interest to characterize the super-finishing process. However, this parameter depends on the evaluation length ([HASEGAWA1996]; [DUBUC 1989]) and if we suppose that the scanning area is very small compared to the full area of the part then the \(R \) parameter cannot be evaluated on the whole surface. As a consequence, a multi-scale modelling has to be constructed to extrapolate data from the profile length to the whole sample. In this chapter, we propose an original method that allows both predicting maximal range amplitude versus length of the part and giving confidence intervals of the predicted values. It is shown, thanks to a wavelength analyse, that the surface obtained by belt finishing process (BFP) gets a multi-scale structure [MEZGHANI 2009] and the surface integrity of these tooled surfaces is of major interest to ensure high fatigue performances of the polished surfaces. Axinte et al. ([AXINTE 2005]) and Novovic et al. ([NOVOVIC 2004]) confirmed on a AISI 52100 steel [RECH 2008], where it is shown that the BFP improves very significantly the surface integrity by the induction of strong compressive residual stresses in the external layer and by a great improvement of the surface roughness. This process can be modelled by a peak removal technique [KHELLOUKI 2007] and then it becomes obvious that surface topography of BFP will be well characterized by the \(R \) roughness parameter ([AXINTE 2009]; [JOURANI 2005]).

For these reasons, we will apply our methodology on the surface topography of a AISI 52100 steel machined by BFP. In a first part, the abrasive process is detailed and the protocol of the roughness measurements is described. After multi-scale analyses of the surface topography
obtained by BFP, a prediction model is proposed and validated at different scales. A fractal model is then proposed to confirm the multi-scale aspect of the tooled surface.

III.2. Grinding belt device

The testing bench is composed of a Bader type grinding belt device set up on a conventional lathe. Consequently, the system has a horizontal structure which is currently used for the grinding belt super-finishing of crankshafts. To be sure of the reproducibility of the process, five bearings are tooled. Their dimensions are 54.78 mm in diameter and 30 mm in width (Figure III-1). The belt is 20 mm width. The tooling movement is composed of a tangential relative part displacement due to its rotation with regard to the belt one and an oscillation of the tooling arm in the axial direction of the tooled part. Specimens were turned, rectified and tooled with the following process:

- Hardness of contact wheel (polyurethane): 90 shores
- Belt grit size: 9 μm
- Contact pressure: 1 bar
- Workpiece rotation speed: 100 rpm
- Belt feed: 50 mm/mn
- Cycle time: 3 s
- Axial oscillation frequency: 1.6 Hz
- Axial oscillation amplitude: ±0.5 mm
- Lubrication: CUT MAX H05™

III.3. Roughness measurement

27 profiles are recorded perpendicularly to the grooves over a 0.1 μm sampling length, a 8 mm scanning length (80,000 amplitude roughness data per profile) and a 100 μm/s scanning speed.

The surface recorder is a tactile profilometer 3D KLA TENCOR® P10 with a 2 μm stylus radius loaded with 5 mg. The instrument has a vertical resolution better than 10nm with a lateral x axis
resolution of 50 nm and y axis resolution of 1 μm. Each profile was fitted by a least mean square third degree polynomial function to remove the form and keep only waves and roughness. Figure IV-2 represents a recorded profile of the tool surfaces with three spatial zoom (X8, X35, X200) located at the profile origin. As it can be observed, the structure of the surface presents deep valleys and honeys due to the belt finishing process.

III.4. Multi-scale roughness characterization

The arithmetic average roughness parameters (R_a) and the total amplitude one (R_t) also called the “peak-to-valley” are very often used to characterize the surface roughness. Unfortunately, the effect of the evaluation length is not always taken into account although these parameters depend on the observation scale ([DUBUC 1989]; [WHEBI 1986]). The dependence of scale measure is defined in the fractal formalism introduced by Mandelbrot ([MANDELBROT 1983]) and then was used to characterize the surface roughness [TRICOT 1993].
Figure III-2: Recorded profile (whole profile) of the tooled surfaces of AISI 52100 steel machined by belt finishing process with three spatial zoom (X8, X35, X200) located at the profile origin.

III.4.1. Basic concept

The multi-scale analysis tools are described. The goal of the data management was to compute the roughness amplitude parameter $R_s = Y_{\text{max}} - Y_{\text{min}}$ as a function of the evaluation length. As far as R_s is concerned, it can be expected that the probability to record high peaks (i.e. high value of Y_{max}) or deep valleys (i.e. small value of Y_{min}) increases with the evaluation length l. Although the $R_s = \frac{1}{l} \int y(x) dx$ depends on the evaluation length $l \leq l_0$, it becomes constant (result not shown) on the whole profile length L ($L > l_0$) and is equal to $R_s = 0.32 \mu m$. Other roughness parameters are computed (Table III-1). In our algorithm, the values of Y_{max} and Y_{min} are computed to calculate a local value of R_s, noticed $R_s(x, l) = Y_{\text{max}}(x, l) - Y_{\text{min}}(x, l)$ for a given
evaluation length \(l \) beginning at the \(x \) position of the profile length (\(x \) and \(l \) varying from 0 to \(L=2\text{mm} \)) on the residual profile. Then, the evaluation window of length \(l \) is shifted by a quantity \(d(d \in [\Delta x, L/2]) \) to estimate new local values \(Y_{\text{max}}^1(d, l), Y_{\text{min}}^1(d, l) \) and \(R_{i}^1(d, l) \) noted respectively \(Y_{\text{max}}^d(l), Y_{\text{min}}^d(l) \) and \(R_{i}^d(l) \). This operation is repeated until the end of the residual profile \(i \) is reached giving three sets of local values \((Y_{\text{max}}^d(l), Y_{\text{max}}^{2d}(l), Y_{\text{max}}^{3d}(l), \ldots), (Y_{\text{min}}^d(l), Y_{\text{min}}^{2d}(l), Y_{\text{min}}^{3d}(l), \ldots), (R_{i}^d(l), R_{i}^{2d}(l), R_{i}^{3d}(l), \ldots)\). Then an average is computed on the three sets giving three scalars noted \(Y_{\text{max}}(l), Y_{\text{min}}(l) \) and \(R_{i}(l) \) corresponding to an observation scale \(l \) for the residual profile.

III.4.2. Preliminary result

Figure III-3 represents the multi-scale roughness values of \(Y_{\text{max}}(l), Y_{\text{min}}(l) \) and at different observation scales \(l \) for the 27 recorded profiles. The following primary comments can be declared from these graphics:

- The three roughness parameters \(Y_{\text{max}}(l), -Y_{\text{min}}(l) \) and \(R_{i}(l) \) increases logarithmically with the evaluation length \(l \) meaning.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>0.32</td>
<td>0.27</td>
<td>0.37</td>
<td>0.03</td>
</tr>
<tr>
<td>Rq</td>
<td>0.40</td>
<td>0.36</td>
<td>0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>Sk</td>
<td>-1.4</td>
<td>-2.1</td>
<td>-0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Ek</td>
<td>8.2</td>
<td>4.5</td>
<td>14.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Rt</td>
<td>4.8</td>
<td>3.0</td>
<td>7.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lac</td>
<td>12.6</td>
<td>10.1</td>
<td>15.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Peaks</td>
<td>1315</td>
<td>1205</td>
<td>1475</td>
<td>69</td>
</tr>
<tr>
<td>Sm</td>
<td>19.2</td>
<td>17.1</td>
<td>20.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Rpk</td>
<td>0.6</td>
<td>0.3</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Rk</td>
<td>0.9</td>
<td>0.7</td>
<td>1.0</td>
<td>0.08</td>
</tr>
<tr>
<td>Rvk</td>
<td>3.3</td>
<td>1.6</td>
<td>5.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Fractal dimension</td>
<td>1.141</td>
<td>1.129</td>
<td>1.151</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table III-1: Descriptive statistics of roughness parameters of recorded profile of the tooled surfaces of AISI 52100 steel machined by belt finishing process.
Figure III-3: Multi-scale roughness values of $Y_{\text{max}}(l)$, $Y_{\text{min}}(l)$ and $R_{\varepsilon}(l)$ versus the evaluation scales l for 27 recorded profiles of AISI 52100 steel with belt finishing process.

that amplitude of peaks and valleys decreases with the scale (see Figure III-2).

- $-Y_{\text{min}}(l) >> Y_{\text{max}}(l)$ whatever the value of the evaluation length (see Figure III-4). For example $Y_{\text{max}}(2\mu m) = 0.086\mu m$ increases to $Y_{\text{max}}(2000\mu m) = 0.1\mu m$ and $-Y_{\text{min}}(2\mu m) = 0.91\mu m$ increases to $-Y_{\text{min}}(2000\mu m) = 2.77\mu m$. This roughness signature was not met in the case of micro-machined surfaces [BIGERELLE 2008]. This multi-scale difference characterizes the BFP that can be seen as peek removal process that decreases more the peaks amplitude than the valleys amplitude as discussed in the introduction.
Figure III-4: Multi-scale mean roughness values of $Y_{\text{max}}(l) - Y_{\text{min}}(l)$ at different evaluation scales l obtained by averaging the $Y_{\text{max}}(l) - Y_{\text{min}}(l)$ on the 27 recorded profiles as shown in Figure III-1.

Figure III-5: Multi-scale mean roughness values of $R_t(l)$ at different evaluation scales l obtained by averaging $R_t(l)$ on the 27 recorded profiles as shown in Figure III-1.
An original result given by this analysis is that the difference $Y_{\text{max}}(l)-Y_{\text{min}}(l)$ is always negative whatever the evaluation length l meaning that local small peaks are also removed and not limited to the higher global peaks. Thanks to this multi-scale analysis, this relationship can be explained by the fact that the contact area between abrasive grains and part is small due to the circular shape of the contact wheel leading to local peaks erosion in this contact area.

- Dispersion of the roughness parameters estimations increases with the evaluation length l. As it can be observed, curves are more and more scattered as the evaluation length increases. This second scale effect constitutes the basic concept of this paper and will be discussed later. However, its clearly means that the accuracy to predict a maximal or minimal values depends drastically of the evaluation length and will be less and less precise as the evaluation length increases.

III.4.3. The different stages of the multi-scale analysis

For each experimental profile under consideration, the averaged local values $R_z(l)$ of the 27 related residual profiles are all averaged to obtain a final R_z value at an evaluation length l. Figure III-5 shows the variation of $R_z(l)$ versus the evaluation length in log-log coordinates.

From this graphics, it can be observed that two different stages emerge: a linear stage and a logarithmic one. With appropriate statistical techniques developed earlier to describe the different stages in fatigue crack growth propagation [BIGERELLE 1999], it can be stated that these two stages limits are:

Stage 1: $l \leq 4 \mu m$ (log-log linear stage),

Stage 2: $l > 4 \mu m$ (log-log logarithmic stage).

Here, this analysis is purely visual. Basically as met in the bibliography, one could think that we are in presence of a bi-fractal structure ([WU 2000]; [HE 1997]; [THOMAS 1999]; [BHUSHAN 1992]; [WU 2001]). The linear part represents the fractal part (stage 1) and the second one, a pseudo asymptotical stage. In our case, this bifractal structure does not hold.
We will prove that in fact the linear part is a measure artifact due to the stylus radius of the profilometer and that the second stage is composed of two sub-stages: a non-linear fractal stage (sub-stage II.a) and an “extreme values stage” (sub-stage II.b). For reason of simplicity, we voluntary introduce first the fractal stage to analyse these three stages.

III.4.4. Stage II.a: the fractal stage

The fractal concept with the R_s value was introduced by Dubuc et al. ([DUBUC 1989]) who have developed a method to calculate the fractal dimension of profiles called “the oscillation method”. This method introduces the τ-oscillation of the function f in x defined as

$$f : [a, b] \rightarrow IR$$

$$OSC_{\tau}(f, x) = \max_{|x|<\tau} (f(x)) - \min_{|x|<\tau} (f(x))$$

(1)

by taking the average of $OSC_{\tau}(f, x)$ within the interval $[a, b]$, one obtains:

$$VAR_{\tau}(f, a, b) = \frac{1}{b-a} \int_a^b OSC_{\tau}(f, x) dx$$

(2)

So that the fractal dimension is written as

$$\Delta(f, a, b) = \lim_{\tau \to 0} \left(2 - \frac{\log VAR_{\tau}(f, a, b)}{\log \tau} \right)$$

(3)

By roughness analogy one has:

$$R_s(\ell) = OSC(\ell)$$

(4)

where function f is given by our experimental profile fe and under this consideration, from Equation (2):

$$R_s(\ell) = VAR_{\ell}(f, 0, l)$$

(5)

From Equation (3), the fractal dimension $\Delta(fe, 0, \ell)$ of the fe profile is equal to 2 minus the slope called the Hölder exponent.
However, except in the stage 1, no linear relation is found (Figure III-5). It must be also noticed that in a large number of papers, a perfect linear stage is never met. Why does the linearity not perfectly hold?

We search if this non-linearity could not be due to a sampling problem. By analyzing Figure III-5, it become obvious that above the value of 4μm, the R_s values less and less increase with respect to the profile length, meaning that if the fractal concept holds (i.e. linearity in the log-log scale), the R_s values are less and less underestimate as the evaluation length increases. An explanation of this bias can be stated: the number of data points is imposed by the profilometer (80,000 in this study) meaning that for small evaluation lengths, the R_s value is computed with a finite number of points and this number increases with the evaluation length. If one gets an infinity of points to evaluate the R_s value then the R_s estimation will converge to the true value of the R_s parameter.

Unfortunately, as the number of points is limited, the probability to obtain the true maximal range amplitude on a fixed interval length diminishes with the number of points. This leads that the R_s value will be more and more underestimate when the evaluation length diminishes.

To validate this hypothesis, a simulation will be proposed. A perfect Brownian profile ($\Delta = 1.5$) will be simulated by an algorithm process [SPITZER 1976] (Figure III-6). This choice is justified by the fact that no artifact is introduced by this simulation to the opposite of simulations with partial Brownian motion [ZHOU 2005].

The implanted algorithm consists of 6 steps:

Step 1: a Brownian motion is simulated with a high number of points 5×10^5.

Step 2: a windows size l is chosen.

Step 3: a set of k uniformly distributed points are taken into this windows to estimate the R_s, noted R_{ts} (l).

Step 4: another k value is taken and step 3 is repeated.

Step 5: another length of windows size is taken and step 2 to step 4 are repeated.
Step 6: goto step 1 to average values of $R_{t_k}(l)$.

Figure III-6: Simulated profile corresponding to a trace of a perfect Brownian motion.

Figure III-7 represents the values of $R_{t_k}(l)$ versus the number of points k used to estimate R_t for different window sizes (l). For a given interval length, the R_t values increase with the number of points but this increase is less and less significant. This clearly confirms our basic hypothesis: R_t values are more and more underestimated as the number of points used to estimate R_t decreases. As the window size l decreases, the R_t values also decreases because of the fractal aspect of Brownian motion. This sampling effect introduces an artifact leading to a non-linear stage. To represent this artifact, R_t values are plotted (in log-log scale) versus the evaluation length with a fixed number of points used to estimate the R_t value for all the evaluation length (Figure III-8). Two remarks have to be made:

- If the number of points is constant to estimate the R_t value for all evaluation length then a perfect linear relation hold.

- The intercept decreases with the number of points used to estimate the R_t value.

To conclude R_t is uniformly underestimated (in log-log coordinates) as the number of points used to estimate the R_t decreases but the linear part stay unchanged (in log-log scale). More
drastic, if the number of points used to estimate R_t increases proportionally with respect to the evaluation length, the slope will be higher than the true value (Hölder exponent) leading to diminish the computed fractal dimension. To visualize this artifact, fractal dimension

![Graph](image)

Figure III-7: Values of $R_t(k)$ versus the number of points k used to estimate R_t for different window sizes (l) corresponding to the profile shown in Figure III-6.

![Graph](image)

Figure III-8: Values of $R_t(k)$ evaluated on a perfect Brownian motion (Figure III-6) versus the evaluation length when $R_t(k)$ is evaluated with k points on all window of sizes (l) corresponding to the profile shown in Figure III-6.
is computed versus the number of points used to estimate R_t. More than 108 points are required to obtain an error less than 1% (Figure III-9a).

If the number of point stays unchanged on all windows whatever their lengths, no error occurs on the evaluation of the fractal dimension, and thus whatever the maximal windows size and the total number of points of the discretized profile (Figure III-9b). To the knowledge of the authors,

![Graphs showing the fractal dimension vs. number of points for two methods: Usual method and Original method.](image)

Figure III-9: Values of fractal dimension of a perfect Brownian motion of theoretical value of 1.5 calculated by the Oscillation method (Equation (3)) when $R_t(x)$ is evaluated on with different k points on all window of sizes l with $l = p \times k$, p a scale independent constant (usual method (a)) and with a constant number of points for all windows of size l (original method (b)).
Figure III-10: Average autocorrelation functions of the 27 recorded profiles of for 27 recorded profiles of AISI 52100 steel with belt finishing process.

This statistical artifact was never commented in the bibliography and this statistical bias leads some authors to oversample signals to diminish this artifact effect and then estimate more precisely the fractal dimension by diminishing the bias amplitude. A new algorithm of computation of the fractal dimension, without sampling artifact, applied on real experimental profile may emerge from these results and authors work on this: results will be deferred in another chapter.

III.4.5. Stage I: the stylus radius tip stage

Profiles appear smoother when l<4μm and this value l is exactly the diameter of the tip of the profilometer. The stylus curvature radius makes a smoothing effect of the surface. The stylus cannot record any information into crevices which are narrower than the stylus width ([POON 1995]; [MC COOL 1986]; [RADHAKRISHNAN 1970]; [WHITEHOUSE 1974]; [NAKAMURA 1966]; [OHLSSON 2001]; [SHEIKO 1994]; [MAZERAN 2005]). To analyse the stylus effect on surface integration, an algorithm is developed to simulate the stylus effect on profile.
However, our recorded surfaces present the stylus effect and as a consequence surfaces without stylus integration effect have to be re-created. To create these surfaces, a model that simulates the BFP effect on surface topography [BIGERELLE 2008] is used. This model is based on fractal function that represents initial profile before belt finishing processing (Figure III-11) and two “wear” parameters that characterize wear intensity and material hardness. Figure III-12 represents surface simulated after belt finishing processing corresponding to the experimental profiles used in this study. An algorithm simulating the scanning effect on the profile is written without using

Figure III-11: Fractal modelling of initial grinded surfaces before applied belt finishing surface.
Figure III-12: Simulated profile (whole profile) of the tooled surfaces of AISI 52100 steel machined by belt finishing process with three spatial zoom (X8, X35, X200) located at the profile origin simulated by Bigerelle et al.' model [BIGERELLE 2008] without low frequency wave forms with stylus integration of $r=2\mu$m.

mathematical assumption because of the non-derivability of fractal curves. Stylus scanning effect was simulated with radii curvatures from 1μm to 5μm. From Figure III-13 the threshold Stage I and Stage II, appear around 4μm for a tip diameter of 4μm and increases with the stylus tip radius. This simulation confirms the fact that this linear stage is due to the effect of smoothing surfaces caused by the tactile covering.
As it is observed, modelling the BFP is very relevant to model high finished surfaces at all scales because multi-scale measures of R_s, on experimental (Figure III-5) and simulated surfaces (Figure III-17) are quite similar, and thus, whatever the scales of observation.

![Graph showing multi-scale roughness values of $R_s(l)$ at different observation scales l computed from simulated profile with stylus integration processed at different radii.](image)

Figure III-13: Multi-scale roughness values of $R_s(l)$ at different observation scales l computed from simulated profile with stylus integration processed at different radii.

III.5. The macroscopic multi-scale analysis of the amplitude roughness

As shown, a fractal stage can be non-linear due to sampling problems. However, it becomes obvious that the fractal formalism on tooled surface cannot be applied for high evaluation length. Intuitively, we may admit that above a critical length, the fractal concept fails, meaning that physical processes that create the fractal aspect do not affect the surface morphology. In mathematical terms, above this critical length, profiles have lost the memory of the topography.

This loss of memory can be quantified by the autocorrelation function. It is reported in the bibliography that autocorrelation function can be used to determine fractal properties of profiles ([LOPEZ 1994]; [MANDELBROT 1968]). The average autocorrelation function of all profiles is plotted in Figure III-10. As it can be observed, the autocorrelation decreases until it reaches a null value (in average) for $l>350\mu m$. After the stage II, no “memory” occurs in the profile that
becomes a pure random process and must be analysed with appropriate tools. This Stage II.b but
more especially the length value of the threshold Stage II.a and Stage II.b is of major interest in
finishing processes because it quantifies the scale above which the process parameters will not
influence the topography and any modification of the process that can decrease the R_s value.
This result is fundamental in the dimensional tolerance of tooled parts.

To check the assertion that above the fractal stage, the increase of the maximal Roughness
amplitude is due only to a pure random process (independent of the processing conditions), a
mathematical formalism is described in the next paragraph.

III.5.1. A new stage: the extreme values stage (sub-stage II.b)

Does the recorded signal exhibits a pure stochastic process above $l>350\mu m$? In fact, a new
concept was introduced and applied accurately on milling surfaces tooled by single diamond
turning [BIGERELLE 2007]a. Above the fractal stage, the surface becomes stationary in a
statistical sense (ergodicity) meaning that the mean amplitude of the surface stays constant but
the mean is calculated in term of mathematical integration without including sampling effect as
described previously in stage II.a. However, including sampling effect, the fluctuation occurs due
to inherent stochastic process and the magnitude of the extreme values increases with the
number of sampling points. The most successful method of safety or reliability was found in the
application of the statistical extreme-value analysis using the Gumbel distribution [GUMBEL
1954] to predict the maximum value of pits on a surface. Because of some limitations (i.e. no
confidence intervals for extreme value predictions, properties of the parent distribution are
imposed), an alternative methodology to the Gumbel distribution is proposed.
Empirical distributions of minimal, maximal and range roughness amplitudes for an evaluation length of 350 μm

Figure III-14: Empirical distributions of minimal $Y_{\text{min}}(l)$, maximal $Y_{\text{max}}(l)$, and range roughness amplitude $R_y(l)$ at the evaluation scale $l=350\mu m$.

III.5.2. Extreme amplitude roughness modelling

The surface roughness parameters $Y_{\text{max}}(l)$ and $Y_{\text{min}}(l)$ are measured at a given observation scale l and it raises the following issue: “what will be the values of these parameters at a higher scale that was not measured and what will be the error in the prediction?” The answer to this question is of major interest for the control of high finished surfaces because surface roughness is seldom measured on the whole part (high time consuming, limitation of scanning length of profilometers, etc.). To predict roughness amplitude at higher scales, we suppose that the evaluation length is above the fractal stage ($l>350\mu m$) and then the Stage II.b has to be modelled.
Our methodology is based on the generalized lambda distribution formalism (GLD) [KARIAN 2000] and the use of a Monte-Carlo method.

The histograms of all sets \(\{Y_{\text{min}}^{35\mu m}, Y_{\text{max}}^{35\mu m}, \ldots, Y_{\text{min}}^{350\mu m}, Y_{\text{max}}^{350\mu m}, \ldots\} \) are presented in Figure III-14. The first phase consists in modelling these histograms thanks to the use of the lambda distribution. The generalized lambda distribution (GLD) family is specified in terms of its percentile function (called also the inverse distribution function) with four parameters \(\lambda_1, \lambda_2, \lambda_3, \text{ and } \lambda_4 \):

\[
Q^{-1}(y; \lambda_1, \lambda_2, \lambda_3, \lambda_4) = \lambda_1 + \left(y_0 - (1 - y)^{\lambda_4}\right) / \lambda_2
\]

(6)

The parameters \(\lambda_1 \) and \(\lambda_2 \) are, respectively, the location and scale parameters, while \(\lambda_3 \) and \(\lambda_4 \) determine respectively the skewness and the kurtosis of the GLD. The probability density function \(f_x(x) \) can then be easily expressed from the percentile function of the GLD:

\[
f_x(x) = \frac{\lambda_2}{\left(\lambda_3 y^{\lambda_4 - 1} + \lambda_4 (1 - y)^{\lambda_4 - 1}\right)}
\]

(7)

Obviously, the main problem is to estimate the parameters \(\lambda_1, \lambda_2, \lambda_3, \text{ and } \lambda_4 \) in order to have the best fitting of the GLD with the experimental frequency distribution (of extreme roughness values in this study). In a first step, empirical moments are calculated from \(n \) experimental data \(x_i, i \in \{1,2,\ldots,n\} \):

\[
\hat{\lambda}_1 = \frac{\sum_{i=1}^{n} x_i}{n}
\]

(8)

\[
\hat{\lambda}_2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\lambda}_1)^2}{n}
\]

(9)

\[
\hat{\lambda}_3 = \frac{\sum_{i=1}^{n} (x_i - \hat{\lambda}_1)^3}{n\hat{\lambda}_2^{1/2}}
\]

(10)

\[
\hat{\lambda}_4 = \frac{\sum_{i=1}^{n} (x_i - \hat{\lambda}_1)^4}{n\hat{\lambda}_2}
\]

(11)
Figure III-15: 3D view of the values of the function $\Psi(\lambda_3, \lambda_4)$ for the lambda distribution associated with $Y_{\text{max}}^x (350\, \mu m)$ and $Y_{\text{min}}^x (350\, \mu m)$. On the right, $Y_{\text{max}}^x (350\, \mu m)$ and $-Y_{\text{min}}^x (350\, \mu m)$ lambda distribution obtained after minimization on $\Psi(\lambda_3, \lambda_4)$.

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\alpha}_1$</th>
<th>$\hat{\alpha}_2$</th>
<th>$\hat{\alpha}_3$</th>
<th>$\hat{\alpha}_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{\text{max}}^x (350, \mu m)$</td>
<td>0.663</td>
<td>0.193</td>
<td>1.492</td>
<td>10.69</td>
</tr>
<tr>
<td>$Y_{\text{min}}^x (350, \mu m)$</td>
<td>1.791</td>
<td>0.790</td>
<td>1.423</td>
<td>5.797</td>
</tr>
</tbody>
</table>

Table III-2: Moments of $Y_{\text{max}}^x (350\, \mu m)$ and $Y_{\text{min}}^x (350\, \mu m)$ distributions.

<table>
<thead>
<tr>
<th></th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>λ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{\text{max}}^x (350, \mu m)$</td>
<td>0.596</td>
<td>1.085</td>
<td>-0.123</td>
<td>-0.0632</td>
</tr>
<tr>
<td>$Y_{\text{min}}^x (350, \mu m)$</td>
<td>1.091</td>
<td>0.0754</td>
<td>0.0060</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

Table III-3: Values of the four parameters for the both lambda distributions that modelled $Y_{\text{max}}^x (350\, \mu m)$ and $Y_{\text{min}}^x (350\, \mu m)$.
Figure III-16: $\hat{f}_{\text{max}}^{350\mu m,k}$ and $-\hat{f}_{\text{min}}^{350\mu m,k}$ PDF's functions prediction obtained from 100,000 Monte-Carlo simulation for the 5 magnifications $k \in \{1, 2, 5, 10, 20\}$. The case $k=1$ corresponds to simulation of the original lambda shown in Figure III-15 (on the right).
Figure III-17: Prevision of the mean of the extreme roughness amplitude parameters \(\hat{Y}_{350/\mu m, k} \) and \(\hat{R}_{\gamma_{350/\mu m,k}} \) and \(\hat{R}_{\gamma_{12}} = \hat{Y}_{350/\mu m, k} - \hat{Y}_{350/\mu m, k} \) (lines) versus the evaluation length and the means experimental values \(Y_{\max}(l), Y_{\min}(l) \) and \(R_{\gamma}(l) \).

It is shown [KARIAN 2000] that \(\lambda_3 > -1/4 \) and \(\lambda_4 > -1/4 \) then:

\[
\alpha_1 = \lambda_1 + \frac{A}{\lambda_2} \tag{12}
\]

\[
\alpha_2 = \sigma^2 = \frac{B - A^2}{\lambda_2^2} \tag{13}
\]

\[
\alpha_3 = \frac{C - 3AB + 2A^3}{\lambda_2^3 \alpha_2^{3/2}} \tag{14}
\]

\[
\alpha_4 = \frac{D - 4AC + 6A^2B + 3A^4}{\lambda_2^4 \alpha_2^2} \tag{15}
\]

With

\[
A = \frac{1}{1 + \lambda_3} - \frac{1}{1 + \lambda_4} \tag{16}
\]

\[
B = \frac{1}{1 + 2\lambda_3} + \frac{1}{1 + 2\lambda_4} - 2\beta(1 + \lambda_3, 1 + \lambda_4) \tag{17}
\]
Figure III-18: Multi-scale prediction of extreme roughness amplitudes parameters $\hat{Y}_{\text{min}}^x, \hat{Y}_{\text{max}}^x, \hat{R}_y^x$ at different origin evaluations $x \in \{0.2, 0.5, 1, 2, 50, 360\}$ and experimental ones (dashed line) $Y_{\text{max}}(t), Y_{\text{min}}(t)$ and $R_y(t)$.
\[C = \frac{1}{1+3\lambda_3} + \frac{1}{1+3\lambda_4} - 3\beta(1+2\lambda_3,1+\lambda_4) + 3\beta(1+\lambda_3,1+2\lambda_4) \]

(18)

\[D = \frac{1}{1+4\lambda_3} + \frac{1}{1+4\lambda_4} - 4\beta(1+3\lambda_3,1+\lambda_4) + 6\beta(1+2\lambda_3,1+2\lambda_4) - 4\beta(1+\lambda_3,1+3\lambda_4) \]

(19)

Where

\[\beta(a,b) = \int_a^b x^{a-1} (1-x)^{b-1} \, dx \]

(20)

The moments of \(Y_{\text{max}}^x(350\mu m) \) and \(Y_{\text{min}}^x(350\mu m) \) are reported in Table III-2. To calculate \(\lambda_1 \), \(\lambda_2 \), \(\lambda_3 \), and \(\lambda_4 \), \(\alpha_i \) is estimated by \(\hat{\alpha}_i \) (Equations (8)–(11)) and it is necessary to solve a system of four equations highly non-linear (Equations (12), (13), (18) and (19)). As Equations (18) and (19) depend only on \(\lambda_3 \) and \(\lambda_4 \) and as \(\lambda_3^2\sigma^3 = (B - A^2)^{1/2} \) and \(\lambda_4^2\sigma^4 = (B - A^2)^3 \), the four equations system become a two equations system with more stable numerical convergence (less numerous local extrema). The solutions amounts to find \(\lambda_3 \) and \(\lambda_4 \) by a steepest gradient method on the functional

\[\Psi(\lambda_3,\lambda_4) = \sum_{i=3}^{4} (\hat{\alpha}_i - \alpha_i)^2 \]

(21)

and then \(\lambda_2 \) is calculated from Equation (13) and finally \(\lambda_1 \) from Equation(12). An algorithm was written and computed using the statistical analyses system language to determine the GLD and its related probability density function from the experimental dataset. The numerical results of the minimization process obtained with our computer algorithm are illustrated in Figure III-15 (left). Theses figures present a 3D view of the values of the function \(\Psi(\lambda_3,\lambda_4) \) on which the optimization algorithm is applied for the lambda distribution associated with \(Y_{\text{max}}^x(350\mu m) \) and \(Y_{\text{min}}^x(350\mu m) \) \((-2 < \lambda_3 < 1 \) and \(-2 < \lambda_4 < 2\)). After minimization, the values of the four parameters for both lambda distributions that modelled \(Y_{\text{max}}^x(350\mu m) \) and \(Y_{\text{min}}^x(350\mu m) \) are obtained (Table III-3). Then the \(Y_{\text{max}}^x(350\mu m) \) and \(Y_{\text{min}}^x(350\mu m) \) lambda distribution are plotted.
in Figure III-15 (right). As it can be observed, the lambda distributions fit well the $Y_{\text{max}}^x (350 \mu m)$ and $Y_{\text{min}}^x (350 \mu m)$ empirical distributions. To appreciate the accuracy of lambda distribution to model extreme data roughness, a Chi2 criterion is computed. For both data $Y_{\text{max}}^x (350 \mu m)$ and $Y_{\text{min}}^x (350 \mu m)$, the Chi2 criterion does not reject the appropriateness between experimental and model data for usual critical values $\alpha = 0.05$ (respectively $\text{Chi2}_{\chi_{df}} = 15.99; \ p = 0.07$ and $\text{Chi2}_{\chi_{df}} = 5.79; \ p = 0.56$). This means that $Y_{\text{max}}^x (350 \mu m)$ and $Y_{\text{min}}^x (350 \mu m)$ both obey a lambda distribution and these models may be used to predict some probabilistic features (Table III-3).

III.5.3. Multi-scale prediction of the maximal, minimal and range amplitude roughness

At this stage, analytical probability density functions (PDF) of $Y_{\text{max}}^x (350 \mu m)$ and $Y_{\text{min}}^x (350 \mu m)$ of the maximal and minimal local roughness amplitude (and thus estimated at the scale $l=350\mu m$) are formulated.

Now suppose that the evaluation length is twice the initial one, i.e. one wants to estimate $Y_{\text{max}}^{x'} (700 \mu m)$. By supposing that at this scale data are independent, then the maximal amplitude $Y_{\text{max}}^{x,x'} (700 \mu m)$ is given by:

$$Y_{\text{max}}^{x,x'} (700 \mu m) = \max \left(Y_{\text{max}}^x (350 \mu m), Y_{\text{max}}^x (350 \mu m) \right)$$

for two possible values of x and x'.

In an algorithmic point of view, to obtain $Y_{\text{max}}^x (700 \mu m)$, two values that follow $Y_{\text{max}}^x (700 \mu m)$ lambda distribution are generated (using an appropriate random data generator) and a value of $Y_{\text{max}}^{x'} (700 \mu m)$ is then obtained by taking the maximal values of these two generated values. By repeating a high number of times this procedure, the probability density function of $Y_{\text{max}} (700 \mu m)$ can be obtained. This method can be applied at higher scales l.
\(1 = k \times 350 \mu m, \ k \in \{2, 3, 4, \ldots\} \) and the values of \(Y_{\text{max}}^x (k \times 350 \mu m) \) are obtained by taking the maximal value from \(k \) values generated from the \(Y_{\text{max}}^x (350 \mu m) \) lambda distribution. To simulate a random number that follows a lambda distribution of parameters \((\lambda_1, \lambda_2, \lambda_3, \lambda_4)\), the following equation is used:

\[
p(u) = \lambda_1 + \frac{(u - (1 - u)^k)}{\lambda_2}
\]

(23)

where \(u \) is a uniform random number between 0 and 1 and \(p(u) \) is a generated random value.

In this chapter, we note this predicted value \(\hat{Y}_{\text{max}}^{x,k} \), where \(l_0 \) is the length from which extreme roughness is measured and modelled by the lambda distribution, and \(k \) is an integer magnification coefficient to predict the extreme roughness amplitude at an evaluation length equal to \(l_0 \times k \). To illustrate the prediction method, PDF of \(\hat{Y}_{\text{max}}^{350 \mu m,k} \) and \(\hat{Y}_{\min}^{350 \mu m,k} \) are computed for \(k \in \{1, 2, 5, 10, 20\} \). Figure III-16 represents these PDF functions obtained from 100,000 Monte-Carlo simulations. As it can be observed, the PDF mode increases with magnification \(k \). Figure III-17 represents the means of \(\hat{Y}_{\text{max}}^{350 \mu m,k} \), \(\hat{Y}_{\min}^{350 \mu m,k} \) and \(\hat{R}_{\text{v}}^{350 \mu m,k} \) PDF versus the evaluation length \(l = k \times 350 \mu m \). Without any doubt, it is possible to predict the maximal and minimal roughness at all scales longer than 2000 \(\mu m \) by analyzing the roughness at an evaluation length of 350 \(\mu m \.

However, when the maximal range amplitude \(\hat{R}_{\text{v}}^{350 \mu m,k} \) is computed, a high inaccuracy appears in our modelling. The \(\hat{R}_{\text{v}}^{350 \mu m,k} \) minimizes the real value to the peak-to-valley parameter amplitude because \(R_{\text{v}} \) does not follow an extreme value statistic [BIGERELLE 2007]a.

However, to predict its value, it is possible to use the extreme value theory on the minimal and maximal amplitude and thanks to the general relation:

\[
\hat{R}_{\text{v}}^{350 \mu m,k} = \hat{Y}_{\text{max}}^{350 \mu m,k} - \hat{Y}_{\min}^{350 \mu m,k}
\]

(24)
The R_{max} parameter models the peaks to valley amplitude from 350 µm until more than 1500 µm (Figure III-17).

In the preceding case, all previsions of maximal roughness parameters are estimated by taking the origin sampling condition to $l=350\mu m$ (end of the fractal Stage II.a). Now, the same result is proceeded by taking the origin in all the stages (Stages I, II.a, II.b) ($l_0 \in \{0.2, 0.5, 1, 2, 50, 360\}$µm).

Figure III-18 shows the evolution of the three predicted roughness parameters \hat{R}_{max}, \hat{Y}_{max} and \hat{Y}_{min} for these different origins l_0. As it is observed for all parameters, the predictions always hold for $l=350\mu m$, i.e. greater than the autocorrelation length, with a very good accuracy. This means that the sub-stage II.b described in our section is an extreme value stage and that the other stages do not exhibit this structure as we have claimed in the preceding chapters. Some more cases are tested to check our results: simulations are then carried out on a Weierstrass function that we have modified to obtain different autocorrelation lengths with same fractal dimension (Appendix B). To limit the R_c prediction error at less than 10%, the threshold value l_0 must be higher than half the autocorrelation length.

III.6. Conclusion

The multi-scale analysis shows that belt finishing process creates a fractal structure on tooled surfaces until a critical length that is related to the profile autocorrelation length. When surfaces are recorded by a tactile profilometer, a stage that represents a smoothing effect due to the tip of curvature and less or equal to the tip radius diameter appears. It has been shown that the fractal stage does not present a linear part (in a log–log plot) due to a bias in sampling. If a fixed number of data is used to compute roughness parameters in the multi-scale windows, then a perfect linear relation emerges and allows to perfectly calculate the fractal dimension. We also show that experimental surfaces obtained by BFP can be modelled by fractal functions and a stochastic model at all scales. After the fractal threshold, a stage is characterized by the extreme values
theory. An alternative methodology to the Gumbel approach was presented in order to estimate accurately the maximal peaks and minimal valleys. Based on the generalized lambda distribution and the Monte-Carlo simulation, the distribution of extreme values is predicted on a range greater than the measured one with confidence interval of the maximal valleys and peaks and also the roughness parameters "peak-to-valley". This methodology is a contribution to estimate control tolerance in the field of high precision surfaces obtained by abrasion processes and may be applied to other tooled surfaces.
Chapitre IV

Technique Bootstrap pour la caractérisation de l’angle d’orientation de contact pour l’alignement de cellules sur surfaces rainurées

Lors du premier chapitre, nous avons montré qu’une caractéristique ne peut être pertinente que reliée une fonctionnalité de la surface. Nous avons montré lors de l’étude précédente que la structure de surface sous forme de stries était couramment rencontrée (abrasion, usinage, …). Il est parfois compréhensible qu’un phénomène physique soit influencé localement par une orientation plus prononcée et également plus intense d’une strie.

En relation avec l’Institut de Sciences des Matériaux de Mulhouse, nous avons étudié le rôle d’une strie sur l’orientation des cellules humaines. Nous avons donc construit une méthode statistique originale, simple d’application sur la mesure de l’écart de l’orientation entre la cellule et la strie.

Nous avons montré la valeur critique à partir de laquelle la cellule ne peut être considérée comme orientée, et ce à un intervalle de confiance fixé.

Finalement un modèle est proposé pour donner en fonction du nombre de mesures, l’angle critique de l’écart type au-dessus duquel l’orientation peut être rejetée. Ce modèle est certes simple mais évite tout les problèmes liés à l’utilisation des statistiques directionnelles. Nous montrons que l’application de notre modèle donne des résultats cohérents avec ceux des statistiques directionnelles. Puis nous montrons, en utilisant la technique de bootstrap, un modèle qui permet de déterminer le rôle de la profondeur de stries sur l’orientation cellulaire.

En annexe (annexe C) nous avons écrit un logiciel qui permet d’appliquer cette étude et qui sera disponible pour toute personne désireuse d’appliquer notre méthodologie.
IV.1. Introduction

The contact guidance is a phenomenon describing the tendency of cells to align, to grow or to move along a specific orientation defined by some physical or chemical properties of substrate [BRUNETTE 1999]. A lot of in vitro studies have demonstrated the capacity of human or animal cells to align on micro-grooved but also to nano-grooved substrates ([DEN BRABER 1995]; [EISENBARTh 1996]; [WALBOOMERS 1999]; [WALBOOMERS 2000]; [OAKLEY 1993]; [LU 2002]). Most of authors evaluate the orientation angle of the cells which is defined by the angle made by the long axis (maximum length) of the cell with the direction of the groove or compared the shape factor of the cells defined by the ratio of the major axis to the minor axis ([BRUNETTE 1999]; [FLEMMING 1999]). However very few of them have developed statistical comparison of contact guidance of cells in function of groove width or depth. We propose to develop a statistical approach to compare the orientation angle of cells cultured on nanometric deep microgrooves with different depths made on quartz and cultured during different times. A parameter describing contact guidance capacity of cells has been defined using the standard deviation of orientation angle distribution. We then proposed to build the statistics of these parameters thanks to bootstrap protocol. This newly defined contact guidance parameter will allow the statistical comparison of contact guidance capacity of any cells on any grooved substrate.

IV.2. Experimental protocol

Square quartz surfaces presenting spindle-shape grooves with maximum width 5.9 µm and depth measuring 30 nm, 100, 200 and 500 nm were prepared by photolithography in CSEM. Human osteoprogenitor (HOP) cells were prepared from the human bone marrow of normal patients and were cultured in direct contact with the surfaces during 4, 24, 48, 72 or 120 hours in Iscove modified Dulbecco medium + 10% fetal bovine serum + penicillin-streptomycin at 37°C in a 24-well plate. 20,000 cells were inoculated per sample. After culture, samples were rinsed in phosphate buffered saline (PBS) and fixed at least 30 minutes in paraformaldehyde 2% in NaK2P
0.2M buffer. After rinsing with PBS, and permeabilization with Triton 0.2% in PBS, the cells were labeled with 0.4 µg/ml FITC-phalloidin (Sigma, L'Isle d'Abeau, France) and 100 ng/ml DAPI (4',6-diamidino-2-phenylindole) (Sigma, L'Isle d'Abeau, France). The samples were observed with an epifluorescence microscope Olympus BX51. fluorescent images of cells were analyzed with Image J 1.40g. A line was manually drawn on each cell based on its major direction in the phalloidin-FITC image and an ellipse was fitted to it using the ImageJ software. The orientation angle was obtained from the angle between the direction of the underlying grooves and the major axis of the fitted ellipse. Negative as well as positive orientation angles were used for establishing histograms (figure IV-1). We used both the positive and negative angles in order to keep the symmetry of the distribution.

Figure IV-1: Histograms of angle measurements for different groove depths (30,100,200,500 nm) and time culture (4, 25, 48, 72, 120 hours).
The expression of these angles in absolute values would render the distribution dissymmetrical and then induce a dissymmetry in confidence intervals constructed from these data. A high number of authors take the absolute values. However, taking an absolute value for the cell angle measurement can lead to false interpretation. To illustrate this bias, we will suppose that the angle measurement follows a Gaussian distribution. We then process to the following simulation. 100000 set of (1,2,4,..., 210) random values that follows a Gaussian distribution of standard deviation 15.8° are generated (this corresponds to a case described in this publication) and absolute values of the angle are retained. Then the mean is computed for all set. Figure IV-2 represents the box and whiskers plot versus the number of measurements. As it can be observed, the box and whiskers are dissymetric and as a consequence the confidence interval too. This skewness decreases when the number of measurements increases. The median depends on the number of measurements. As this bias can lead to false interpretation of biological data, we want to find a new indicator to measure the cell orientation.

Figure IV-2: Box and whiskers of the absolute values of the angle measurement computed from 2, 4,..., 256 angle measurements. The initial probability density function of the angle measurement follows a Gaussian one with mean null and standard deviation equal to 15.8.
Figure IV-3: Probability density function of the Orientation angle when no interaction occurs between cells and groove. The fitting curve is the Gaussian approximation of the uniform PDF.

IV.3. Basic idea of critical orientation angle measurement

The basic idea of a new indicator is based on the density probability function (PDF) of the Orientation Angle (OA) measurement and is built on the following assumption: Let supposed that the cell does not respond to the groove (no interaction groove-cell) then the OA PDF follows a uniform PDF lying in the interval [-90... 90°] meaning that all orientations are possible for angle (grooves-cells) (see histogram on figure IV-3).

At the opposite, if the cell is perfectly oriented then OA PDF is Null and the PDF is a Dirac one. However between these two limit cases, some intermediary cases occur. Firstly, it is possible that the error measurement gives an uncertainty on the AO that induces a dispersion of the orientation angle. In a high number of cases, the measurement error follows a Gaussian density with small standard deviation (few degrees). But it is also possible that cell orientation is influenced by grooves but not in a deterministic case: cells follow the groove direction but not perfectly. A high number of variations can explain this stochastic aspect. In fact a sum of causes
can introduce this variation and nothing case seems to be more important than others (The groove geometry is not perfectly homogeneous; response of cell depends on its size, age...; the neighbored cells influence orientation; micro topographies on the sample; homogeneity of the surface chemistry...).

Then it is obvious to postulate that the sum of all independent causes will lead to obtain a Gaussian probability density function with a null mean (no bias in the orientation cell measurement). The lower the groove influence, the higher orientation angle dispersion. In a Gaussian PDF, dispersion is only characterized by the standard deviation and then the standard deviation of the orientation measurement will become our estimator of the orientation angle. The higher the standard deviation, the lower groove influence. However, the Gaussian hypothesis must be tempered for two reasons based on the fact that Gaussian law gets two infinite tails and is in contradiction with the OA measurement:

- Orientation angles must lie in the -90°... 90° range.

- As discussed earlier, when influence groove is neglected, the OA PDF converges to a uniform one with a finite standard deviation and our hypothesis of the increase of the standard deviation with a decrease of groove will leads to an infinite standard deviation in contradiction with the uniform PDF. One must then converge to the uniform law when groove influence can be neglected.

As a consequence, we will consider that the Gaussian is a truncated one in the $-90/90$ boundaries. Unfortunately, under this hypothesis, usual statistics as Chi Square criterion cannot be done easily. Then we will find the parameter of the Gaussian density that is only the standard deviation noted untruncated standard deviation. In a first time, we simulate the truncated Gaussian density for different values of the untruncated Gaussian PDF. We then compute the standard deviation. It can be noticed that the standard deviation will be always less than the untruncated one and this difference increases with the increase of the untruncated standard deviation. The difference will be significant if the probability to have an orientation angle near 90° is significant.
Experimental histograms of figure IV-1 show that a high number of experimental conditions lead to have significant values of this probability. The figure IV-4 shows histograms of different values of untrucated standard deviation. As it can be observed, when untrucated standard deviation (σ_u) increases then the OA PDF starts from a pure Gaussian to a truncated one and finally converges to a uniform law.

IV.4. Experimental validation

To show that the data really follows a truncated Gaussian PDF, a chi square test can be performed. To practice this test, one needs the relation between the standard deviation of the truncated Gaussian versus the untrucated one. To find the relation between the standard deviation σ of a truncated Gaussian density probability function versus the non truncated one σ_u, we have proceeded to a simulation. Gaussian random values were simulated from a non truncated one with a standard deviation of σ_u (Cox and Muller transform). Then values that were not included in the interval [-90, 90] were deleted. When 100,000 un-deleted values were obtained, the standard deviation σ was computed. This step was then repeated for different values of σ ($\sigma_u \in [1, ..., 500]$). Then σ was plotted versus σ_u (see figure IV-5). The values of a uniform random variable are uniformly distributed over an interval. An uniform distribution with parameters a and b has a variance $\{(b-a)^2\}/12$. Since in our case the angle is restricted to values between min=-90 and max=+90, the standard deviation is equal to $\sqrt{(max-min)^2}/12 = \sqrt{180^2}/12 = 52$, then $\lim_{\sigma_u \to \infty} \sigma(\sigma_u) = 52^o$ and according to the shape of data, the following model was proposed $\sigma(\sigma_u) = 52/(1 + a \sigma_u^4)$. By applying the non linear least square method on data to find the a and b values, the model $\sigma(\sigma_u) = 52/(1 + 543 \sigma_u^{100})$ was obtained (red line in figure IV-5). This model line was found to fit very well with experimental data (blue circles in figure IV-5).
Figure IV-4: Monte Carlo Probability density Function of the truncated PDF for different values of untruncated standard deviation (σ_u). The red line is the untruncated gaussian shape computed with the truncated standard deviation (data standard deviation σ).

Figure IV-5: Results of a Monte Carlo simulation to obtain the value of the standard deviation of data σ (truncated Gaussian) plotted versus the standard deviation of the untruncated Gaussian σ_u. The red line correspond to model.
Figure IV-6: On the left: Analyses of the experimental data of orientation angle (in °). On the right: simulation of the probability density functions obtained by a truncated Gaussian PDF (histogram) and untruncated one (line).

Then PDF of 4 experimental data (see table IV-1) are plotted on Figure IV-6. As it can be observed, when the standard deviation of data decreases, the truncated Gaussian passes from uniform PDF (A), to a high truncated Gaussian PDF (B) and a low truncated Gaussian PDF (C) and finally to a quasi untruncated Gaussian PDF (red line) (D).
Table IV-1: Description of statistics for the four samples (A, B, C, D) described in figure IV-6.

IV.5. Relation between Critical Orientation Angle and the number of measurements

At the 95% confidence level, the alignment can be considered significant at a threshold $\sigma_{n_0}(n)$ that depends on the number (n) of measurements performed. To obtain a mathematical relation, we will process to simulation. In a first time, 10000 simulations of sets of n data are created for different values of σ_n ($\sigma_n = 0$ to 500). Then the descriptive statistics are computed i.e. quantiles 5th and 95th and the mean (see figure IV-7 for the case $n=25$ measurements). Then this step is repeated for different number of measurements. Then one plots the values of P95 versus σ_n for different number of measurements (figure IV-8). The intersection of the P95 line with the horizontal line = 52° (value of no orientation that represents the threshold of signification of orientation) is the critical angle of rejection at the critical values of 5%. We will noted this threshold σ_{n_0}. Then σ_{n_0} is plotted versus the number of observations (figure IV-9) and we proposed to fit the data with the following model due to the authors:

$$\sigma_{n_0}(n) = 52.0 / (1 + 0.94 n^{0.8})$$

with $\lim_{n \to \infty} \sigma_{n_0}(n) = \sigma_{n_0} = 52°$

(1)

Figure IV-9 represents this relation: the line corresponds to the equation (1) and points are obtained from Monte-Carlo simulation. All values of σ above this line represent samples in which the cells can be considered as spatially randomly distributed. Interestingly, the more important point is that if the distribution of OA is shown to follow a truncated Gaussian distribution, the equation 1 is valid for all cells on any type of grooves and can be applied to all
measures of cell orientation. We applied equation (1) on the previously shown examples A, B, C and D. The first example (A) showed the absence of orientation of cells ($\sigma > \sigma_{\mu}(n)$) although the three other examples (B, C and D) showed a significant orientation of cells following grooves $\sigma < \sigma_{\mu}(n)$ (Table IV-1).

Figure IV-7: Values of the truncated standard deviation σ versus the untruncated one σ_{μ} computed from a Gaussian truncated PDF obtained with 25 angle measurements with quantiles 5th and 95th and the mean.
Figure IV-8: Plot of the 95th quantile of truncated standard deviation σ versus the untruncated one σ_n, computed from a Gaussian truncated PDF obtained with 25,50,...,450 angle measurements.

IV.6. Bootstrap Protocol

The main problem we get is that no variation is known about the value of our new parameter called σ. The fact that the PDF is a truncated Gaussian law does not allow us to have a simple analytical formula of the confidence interval. More drastic, if data do not follow perfectly this law, then using this parametric model could lead to some artifacts in the data analysis. As a consequence, we will retain to use the bootstrap to build confidence intervals ([JEFFREY 1993]; [ANSELME 2005]; [ANSELME 2006]). The basic idea is to oversample randomly the experimental data with repetitions and to compute σ noted σ'. For example, if one gets 10 measures of orientation angles, then one take randomly 10 values from this set (some can be repeated twice, third,...,some are not included) to have a another set of 10 values from witch σ' will be computed. By repeating a high number of cases (p), one gets a set of $\{\sigma_i',\sigma_2',...,\sigma_p'\}$ that
constitutes the bootstrap PDF estimator of σ. Figure IV-10 represents the bootstrap density function of data A,B,C,D. These histograms allow us rapidly to interpret cell orientation. As no overlap occurs between D, C and A, on could admit that cells on sample D are more oriented than cells on C sample and C cells are more oriented on sample B. Visually, B histogram area, that is greater than the threshold 52°, is less than 5% and consecutively B get a significant orientation. At the contrary, the area for sample A that passes threshold is greater than 5% meaning that there is no orientation of the cells on sample A at the confidence level of 95%. As histograms B and A highly overlap, it would be difficult to conclude without a high risk that cells on B substrate are more oriented than on A one.

Figure IV-9: Values of the σ_{obs} statistics at the 95% confidence level versus the number of measures of OA. The line is the equation given by the model $\sigma_{\text{obs}}(n) = 52.0/(1+0.94n^{1/4})$. All values of σ above the line means that cells can be seen as spatially randomly distributed.
Figure IV-10: Bootstrap density function of the Contact Guidance Parameter (σ) for the four different experiments given in Table IV-1 obtained with 10^6 runs. The critical value of the σ_{95} corresponds to $\sqrt{180^2/12} \approx 52^\circ$.

By reproducing these bootstrap statistics on all experimental data, the categorized Box and Whiskers plot can be plotted that allows to visualize both observed time and depth groove effects by taking account the variation of the indicator σ (figure IV-11).

Figure IV-11: Bootstrapped box plots of the Contact Guidance Parameter σ for all experiments of the study.
Figure IV-12: Plot of coefficients a and b parameters of the model obtained by bootstrap for 5 times in culture.

IV.7. Another models used in the cell measurements orientation.

The model we proposed to quantify cell orientation is quite basic. It is well known that this topic of statistics called "directional statistics" is of major interest in the field of data orientation treatments ([MARDIA 2000]; [JAMMALAMADA 2001]). In fact the directional statistic is used in different topics such as geological, meteorological, biological and industrial science where some or all measurements are expressed as directions. In the case as we have claims that are sums of independent variation, the Gaussian model is well adapted [BAHLMANN 2006]. It exists principally two circular distributions, the Von Mises distribution (VMD) and the Wrapped Normal distribution [BAHLMANN 2006]. The Von Mises distribution has density function

$$f(\theta, \mu, \kappa) = \frac{\exp(\kappa \cos(\theta - \mu))}{2\pi I_0(\kappa)}$$

Where $0 \leq \mu < 2\pi$ and $0 < \kappa < +\infty$, $I_0(\kappa)$ is the modified Bessel function of the first kind and order zero.

The Wrapped Normal Distribution (WND) has density
$F(\theta, \mu, \sigma) = \sum_{k=-\infty}^{\infty} \exp\left(\frac{-(\theta - \mu + 2k\pi)^2}{2\sigma^2}\right) \sqrt{2\pi \sigma^2}$

Where $0 \leq \mu < 2\pi$ and $0 < \sigma < +\infty$.

Closed form does not exist for the WND as contrary to the VMD that matched reasonably well with the WND that justify it common use [BARTUMEUS 2008]. The WND has then theoretical advantages and the VMD has practical benefits including parameters estimation [BAHLMANN 2006]. However, it can be shown than they can be made to approximate each others closely [FISHER 1983] for high value of κ ($\kappa > 4$) and gives the relation $\sigma^2 = 1/\kappa$. Despite these remarks, the choice between these two distributions to model circular data are still in study. For example, Mc Vinish et al. [MC VINISH 2008] propose in the absence of scientific motivation for choosing a particular model Bayesian non parametric approach for choosing the best model that fit circular data and the test for isotropy requires in this case simulated tempering algorithm that is not trivial to program. The major problems consist in estimating both the value of parameters of the VMD (μ, κ) or WND (μ, σ). It exists a high number of method included the well known likelihood estimator. As claimed by Ravindran [RAVINDRAN To appear], this method of estimation for wrapped distribution can be very complicated and computationally intensive. Agostinelli [AGOSTINELLI 2007] show the difficulty to construct robust estimator for these both distribution using the weighted likelihood and the minimum disparity method of parameters estimation. This study seems to show that an outlier highly disturb parameter estimation and more drastically the result of orientation depends both of the model used (WND or VMD) and the method of estimation. Applied on a northern cricket frogs collect, with or without outlier an observation and with different method of estimation applied on VMD involves a difference of $\mu \in [126^\circ, K, 145^\circ]$ and a value of $\kappa \in [2.6, K, 14.8]$ and with the relation $\sigma^2 = 1/\kappa$ leads to $\kappa \in [15^\circ, K, 35^\circ]$. Even for the simplified VMD compared to the WND, Hussin et al. [HUSSIN 2008] shows that the estimation of κ requires some approximation to obtain the maximum
likelihood estimate of the concentration parameter of the von Mises distribution. Briefly speaking, the estimation of the Von Mises inference requires mathematical software as Matlab ([JONES 2006]; [DAKIN 2005]). A rough analytical estimation was proposed based on the Mardia’ [MARDIA 1972] works to estimate the parameters of the WND. These results were firstly used by Fisher et al. to analyzer movement of amaboas under phase constant microscopy [FISHER 1989]. This approach was used recently by Fujita et al. [FUJITA 2008] and Bashur et al. [BASHER 2006] to characterize respectively the orientation of functional group on cell orientation and the effect of fiber orientation on fibroblast proliferation. These authors used the standard deviation to quantify the cell orientation. These authors used the standard deviation to quantify the cell orientation. So the question is: is our truncated Gaussian model a relevant approximation of the WND? An advantage of our model is that the estimator of the contact guidance is the well known empirical standard deviation that is easy to compute and easy to understand for a non statistician. However one has to verify the quality of our basic approximation. We will then compare if WND fit better our angle measurement than our Truncated Gaussian distribution (TGD). In a first time, we simulated WND with different values of σ^2 we will note σ_{WND}. Then the standard deviation is computed and one gets using a non linear model the following equation (figure IV-13):

$$\sigma(\sigma_{WND}) = 52 / \left(1 + 145 \sigma_{WND}^{-1.55}\right)$$

(4)
Figure IV-13: Results of a Monte Carlo simulation to obtain the value of the standard deviation of data σ plotted versus the standard deviation of the normal wrapped distribution σ_{WND}. The red line corresponds to the relation $\sigma(\sigma_{\text{WND}}) = 52/(1 + 145 \sigma_{\text{WND}}^{-1.55})$.

Figure IV-14: Critical probability to reject the 2 models Truncated Gaussian and Wrapped Gaussian ones for 99 experiments of cell orientation measurements.
Then thanks to this relation, when the standard deviation of data is (σ) computed one can find the value of σ_{WND} from equation 4. It is then possible to process to a Chi-2 square test to verify if both model i.e. The WND or TGD are in adequation with data. We have 99 samples on which angle measurement are performed. Then the 99 Chi-2 test are performed on these data. For the 99 experiments it can be notice than TGD models is rejected only three times and the WND two times (figure IV-14). In one case the TGD is adequate and not the WND and in two case the WND is adequate and not the TGD. However a high correlation exists between the Chi-2 values (and the critical value too) for both distribution.

As a consequence, one can admit that the truncated Gaussian density approximation is a relevant model to measure contact guidance parameters and then the empirical standard deviation is an appropriate estimator to measure the cell orientation.

IV.8. Orientation angle Bootstrap modeling.

However, to quantify the groove effect on OA, one has to model orientation by a phenomenological model to quantify the effect of time in culture. The objective is to find a parameter that represents the sensitivity of the cell to be influenced by the groove depth and also to have a confidence interval on this indicator. After some basic considerations, we proposed the following modeling:

$$\sigma(R) = \alpha_{\text{measure}} + \frac{\alpha_{\text{measure}} - \alpha_{\text{linear}}}{1 + a R^4}$$

(5)

Where

$a R^4$ represents the effect on groove depth.

α_{measure} is the error measurements on angle measure.

$\alpha_{\text{linear}} = \sqrt{(180)^2}/12 \approx 52$

To compute this equation, we used the non linear least square method and used again the bootstrap by taking for the bootstrap analyses a bootstrap samples ($\sigma_1(R_i), \sigma_2(R_i), ..., \sigma_k(R_i)$) where k is the number of different grooves depth (4 in our study). Then we plot a versus b (figure IV-
As it can be observed, a high correlation exists between a and b: we proposed to impose $b=1$ without lack of precision (standard residual of residual passes 2.61° to 3.4° that is less than one degree).

To determine a_{measure}, we will state that this value is a systematic error, independent of the experimental conditions. Then an iterative shame on bootstrapped data allows us to find which value of a_{measure} minimizes the least square residual for all groove depths and culture in times (a is computed for each experiment). The figure IV-15 represents the mean of squared residual versus the value of a_{measure} and the minimum value is $a_{\text{measure}}=1.6^\circ$. This value seems to be in good agreement with the intuitive value of error measurement of the orientation angle.

![Graph representing the mean square residuals vs. a_{measure}.](image)

Figure IV-15: Plot of the residuals of the model versus a_{measure}.
Figure IV-16: Validation of the model. $\sigma_{\text{mod}} = 1.6 + 50.4/(1 + aR)$ is plotted versus all experimental σ values (10^5 bootstraps for each experiment). Inset: the histogram represents the error on modelling i.e. the $\sigma_{\text{mod}} - \sigma$.

Then the one parameter following model is proposed (figure IV-16):

$$\sigma = 1.6 + \frac{50.4}{(1 + aR)}$$

(6)

Where a represents a sensibility coefficient of the cells to be influenced by the depth of the groove. Let analyze the limits of the model:

- $\lim_{R \to 0} \sigma(R) = \alpha_{\text{mod.}}$ Without groove, cells are randomly oriented.

- $\lim_{R \to \infty} \sigma(R) = \alpha_{\text{max.}}$ When groove depth become infinite, the cell is constrained by the valleys and follows perfectly the groove.

- $\forall R, \lim_{x \to 0} \sigma(R) = \alpha_{\text{mod.}}$ Whatever the groove depth, there is no groove depth influence.

- $\forall R, \lim_{x \to \infty} \sigma(R) = \alpha_{\text{max.}}$ There is a high influence of the groove depth.

Let now validate our model by analyzing the predicted values versus the experimental values of the orientation angle. As it can be observed, our model fit well small groove depth as well as deep
groove (figure IV-16). The confidence interval at 90° gives a prediction error of +/- 4° (Figure IV-17).

![Graphs showing cell orientation threshold vs. groove depth for different time points (4 hours, 24 hours, 72 hours, and 120 hours).]

Figure IV-17: Contact Guidance Parameter (σ) bootstrapped box plots versus groove depth (in nm) for all experiments of the study. The line represents the model given by eq.3 where a is computed by the least square method for each individual plot.

IV.9. Discussion

Let's plot the box and whiskers of the distribution of a values obtained by repeating 1000 bootstrap for all times in culture (figure IV-18). Thanks to the bootstrap, one can remark that there is no overlap between adjacent a distribution meaning that influence of groove is different for all cultures in time. It appears that in all cases a>0, meaning that whatever the culture time, the influence of groove depth always exists. At the beginning, from 4 hours to 72 hours, cells are more and more sensitive to groove depth (influence increases quasi linear with time in culture). After 72 hours, a decrease of the influence of the groove depth appears. This can be related to an effect of cellular confluence [ANSELME 2000]. Indeed, it is generally considered that confluent normal cells stop to move, orientate and divide and commence their differentiation phase, contrarily to cancerous cells which continue to proliferate [ZHU 2001].
Figure IV-18: Values of a parameter of the model eq.3 versus the time in culture for all experiments of the study. The box plots are obtained by bootstrap (10⁴ runs).

IV.10. Conclusion

We have developed a statistical approach to compare the orientation angle of cells cultured on nanometric deep microgrooves with different depths made on quartz and cultured during different times. A parameter describing contact guidance capacity of cells has been defined using the standard deviation of orientation angle distribution. The statistics of these parameters is obtained by a bootstrap protocol. We have then used these parameters to quantify the effect of groove depth on cell orientation. We have built a phenomenological model that predicts the cell orientation of human osteoblasts on different groove depths. It was then shown that during time in culture, the influence of groove depth always exists and sensibility of the groove depth increases quasi linear with time in culture. However, a decrease of the influence of the groove depth appears when cellular confluence is reach due to the fact that cells stop to move, orientate and divide and commence their differentiation phase. This newly defined contact guidance parameter will allow the statistical comparison of contact guidance capacity of any cells on any grooved substrate (appendix C).
Chapitre V

Conclusion et perspective

En conclusion, voici le bilan du travail effectué durant cette thèse. Nous suggérons quelques voies possibles pour poursuivre ce travail tant sur le plan méthodologique que sur le plan des applications.
Chapitre V : Conclusion et perspective

V.1. Bilan du travail effectué
Dans ce travail de thèse, nous avons défini et construit l'environnement logiciel ainsi que l'architecture génie logiciel du système « MesRug ». Nous avons aussi présenté la structure des données, la conception des objets créés ainsi que leurs interactivités. Puis l'analyse des méthodes de redressement, cœur de l'analyse multi-échelle, est effectuée sur une base de données bien définie.

Nous avons donc implémenté 7 bibliothèques informatiques couvrant les domaines suivants :

- Gestion bases de données,
- Décodage-Encodage standardisé des fichiers de mesures,
- Outils statistiques et numériques génériques,
- Redressement multi-échelle,
- Calcul des paramètres d'état de surfaces,
- Implémentation du Bootstrap,
- Visualisation des profils via SAS et Matlab.

Ce travail a été effectué au sein de l'UTC en liaison forte avec l'ENSAM (structure C++).

Le chapitre 2 a été consacré à l'application de notre système à une étude multi-échelle par filtrage gaussien pour déterminer les caractéristiques d'une pièce usinée et les échelles caractéristiques d'interaction rugosité-usure.

Après nous nous sommes intéressés à l'usinage de super finition par abrasion où nous avons proposé un modèle qui permet de calculer les amplitudes des pics et vallées à l'aide d'une analyse multi-échelle.

Pour une dernière application afin de déterminer le rôle d'une fonctionnalité de surface, nous avons présenté une étude dans le domaine des biomatériaux de l'influence d'une strie sur l'orientation des cellules, en utilisant une méthode statistique que nous avons construit pour mesurer l'écart de l'orientation entre la cellule et la strie.
V.2. Perspectives envisagées

Le travail présenté dans cette thèse a fait l'objet d'une recherche dans le domaine de la caractérisation bidimensionnelle. Les résultats peuvent être complétés par une approche multi-échelles de caractérisation tridimensionnelle des surfaces.

Dans un premier temps, l'étude peut démarrer par un recensement des paramètres de rugosité 3D ou définir des nouveaux paramètres (paramètres statistiques, paramètres de forme,...) en prenant en compte la qualité de surface (résistance à l'usure, adhésion, frottement, usinabilité, biocompatibilité, aspect esthétique, brillance, propriété optique de réflexion,...).

Il s'agit ici de prolonger la recherche de méthodes d'optimisation aux paramètres 3D.

Cependant l'utilisation de la topographie de surface 3D n'est pas sans poser des verrous technologiques non levés à l'heure actuelle :

- points non mesurables sur certaines technologies
- mesureur d'état de surface non transportable ou mesure non possible in situ (dimensions, incertitude de mesure, ...)
- Temps de mesure en 3D
- Anisotropie de l'acquisition de mesure d'état de surface 3D
- Représentativité de la zone de mesure de part sa faible résolution spatiale

La prolongation de ce travail, par une implémentation de nouvelles méthodologies de caractérisation permettra d'étudier le caractère multi-échelle de l'état de surfaces tridimensionnelles et de résoudre les verrous technologiques cités ci-dessus.

- Dans les mesures sans contact, certains points ne sont pas mesurés. Hors la plupart des méthodes numériques en rugosimétrie 3D requiert un pavage de l'espace equi-réparti. Il est donc nécessaire d'utiliser des algorithmes de rebouchage (interpolation) performants incluant la physique responsable de la perte de données (réflexivité de la surface, pentes locales des profils...).
- La mesure 3D est une mesure qui requiert un temps d'acquisition long, avec une résolution spatiale faible. Par contre dans de nombreux systèmes de mesure 2D, la résolution spatiale est élevée et permet alors des mesures plus fiables. Nous proposons d'étudier la topographie 3D (morphologie, texture) afin de déduire les directions pour une mesure 2D optimum. Un premier travail a été réalisé dans ce sens.

- Développer une méthode pour déterminer si un ensemble de mesures topographiques sur une même pièce est homogène : en effet, il est indispensable de posséder une méthode de prétraitement afin de ne pas introduire de biais dans l'analyse ultérieure.
Annexe A :

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Commande</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nettoyer la base de données</td>
<td>Nettoyer</td>
</tr>
<tr>
<td>Entrer les données des mesures de rugosité</td>
<td>Mesures Rugosité</td>
</tr>
<tr>
<td>Visualisation des données des mesures de rugosité</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Création d'une nouvelle table des paramètres de la procédure</td>
<td>Table Paramètres</td>
</tr>
<tr>
<td>Entrer les paramètres de la procédure</td>
<td>Nouveau Paramètre</td>
</tr>
<tr>
<td>Saisir les données des paramètres de la procédure</td>
<td>Saisir</td>
</tr>
<tr>
<td>Supprimer un paramètre de la procédure</td>
<td>Supprimer Paramètre</td>
</tr>
<tr>
<td>Générer la base de données des mesures à effectuer</td>
<td>Génération</td>
</tr>
<tr>
<td>Visualisation de la base de données des mesures à effectuer</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Lecture des fichiers de mesure du répertoire courant</td>
<td>Lecture</td>
</tr>
<tr>
<td>Visualisation de la base de données générer</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Générer la base de données juste avec les fichiers de mesure</td>
<td>Génération</td>
</tr>
<tr>
<td>Visualisation de la base de données générer</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Visualisation des calculs de paramètres de rugosité</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Optimisation de la Table des calculs de paramètres de rugosité</td>
<td>Visualisation</td>
</tr>
<tr>
<td>Visualisation de la structure de la table des résultats de calcul</td>
<td>Visualisation</td>
</tr>
</tbody>
</table>

Figure A-1 : fenêtre des commandes de la gestion de la base de données des mesures de rugosité et des paramètres de la procédure.
Figure A-2 : fenêtre de la saisie des données des mesures de rugosité
Appendix B: Determination of the threshold of the extreme values stage

We have shown that the extreme values stage holds if the threshold from which the extreme values are predicted is greater than the autocorrelation length. To verify this purpose, the Weierstrass fractal function is used and extreme value stage is computed. The Weierstrass function is defined as follows:

\[W(x) = \sum_{n=0}^{\infty} a_n W^{-\Delta H} \left(\cos \left(W^n x + \varphi_n \right) \right) \]

where \(\Delta = 2 - H \) is the fractal dimension, \(a_n \) gaussian random numbers and \(\varphi_n \), uniform random numbers belonging to the range 0 and \(2\pi \).

We modify this function as follows:

\[W(x) = A \sum_{n=d}^{\infty} a_n W^{-\Delta H} \left(\cos \left(W^n x + \varphi_n \right) \right) \]

This transformation does not change the fractal dimension but the function has lost its statistical self-affinity. This function is normalized to unity in amplitude with the \(A \) factor. As a consequence, the higher \(d \) is, the lower the low frequencies amplitude is then the lower the autocorrelation length is. We have selected the value for the fractal dimension \(\Delta = 1.5 \) (Brownian motion). 10 profiles are simulated for each \(d \) value, \(d \) varying from 0 to 15. (Figure III-A.1).

Figure III-A.2 represents the mean autocorrelation functions. As it can be observed, the autocorrelation length decreases logarithmically with respect to the \(d \) value (Figure III-A.3). Then the extreme values are computed from a given origin and the error on \(R_e \) at 8000\(\mu \)m is evaluated.

Figure III-A.4 represents the error on \(R_e \) prevision at 8000 \(\mu \)m versus the windows length (in \%) on which extreme values are computed and thus for different \(d \) values, i.e. different correlation lengths. For a given \(d \), error on \(R_e \) predicted at 8000 \(\mu \)m decreases with the values from which extreme values are computed. For a given initial values from which extreme values are computed, the error decreases with \(d \) value, i.e. the autocorrelation length decreases. An error less than 10\%
is fixed on the R_s prediction and the minimal values from which extreme values must be computed to guaranty this prediction is evaluated. Finally, the autocorrelation length is plotted versus this critical value (Figure III-A.5) that shows that the windows from which the extreme value stage holds lies around 50% of the autocorrelation length of the profile.

Figure III-A.1: Simulated surfaces with modified Weierstrass function obtained with different low frequencies truncation $d = 0$ (no truncation), and $d \in \{4, 8, 10\}$.

146
Figure III-A.2: Autocorrelation functions of simulated surfaces with modified Weierstrass function obtained with different low frequencies truncation $d = 0$ (no truncation), and $d \in \{4, 8, 10\}$ presented in Figure III-A.1.

Figure III-A.3: Values of autocorrelation lengths of autocorrelation functions presented in Figure III-A.2 with their 95% associated confidence intervals.
Values from which extreme values are computed (μm)

Figure III-A.4: Error on R_t prevision at 8000μm versus the windows length (in %) on which extreme values are computed and thus for different d values, i.e. different correlation lengths.

Figure III-A.5: Plot of the autocorrelation length versus this critical value (Figure III-A.4) representing an error on R_t prevision at 8000μm less than 10%.
Appendix C: A contact guidance coefficient for quantification of cell orientation on nanometric deep microgrooves: Contact_guidance_parameter_software.

The main of this program is to compute the CGP parameters defined in the chapter IV « Bootstrap protocol to characterize the contact guidance angle of cell orientation »;

Operating systems:

This software run on Windows (W95, W98, WNT, W2000, WXP, W Vista)

Data input:

The data input is a classical file txt.

Format of the data is sample angle;

Where sample is the number (numerical type ➔ no character, for example sample=212);

Angle is the orientation angle in ° (For example angle=35).

Example:

5 and 6 measurements are restively made on 2 samples noted 1 and 2.

The file is then:

1 10
1 11
1 14
1 17
1 12
2 20
2 22
2 21.5
2 22
2 24
2 23.5

Remarks:

The delimiter between sample and angle is a blank (no tabulation).

How to input data

- Using notepad

 • go to start-program-accessories-notepad.

 • input data as follows.
and save file with save as (the filename in this case is CGP.TXT)

- Using excel

Enter data → sample in column A and angle in column B
and save text (blank delimiter) (the filename in this case is CGP.PRN)
CGP Computation:

When data is input, launch CGP programs

double click on cgp (cgp.exe)

it appears

Enter 0 if file is cgp.txt else enter the filename for example cgp.prn
Enter the number of bootstrap (10000 for example)
Results are

For CGP (no bootstrap) in case1 file

Double click on case1 (case1.txt file) and appears:

The column 1: the sample number

The column 2: number of initial sample

The column 3: means of orientations angles (equals theoretically to zero if no bias in orientation measurement).

The column 4: CGP parameters
The column 5: CGP_{H0} parameters where CGP_{H0} is the 95% confidence level of the relation between CGP_{H0} and the number n of measures of cell orientation given by the following model:

$$CGP_{H0} = 2.05(1 + 0.94n^{-0.51})$$

The column 6: Gives if cell orientation is significant at the 95% confidence level (significant if $CGP \leq CGP_{H0}$).

For CGP (bootstrap) in case2 file

Double click on case2 (case2.txt file, be careful that filesize is not too large i.e <100 Mo) and appears:

```
<table>
<thead>
<tr>
<th>n</th>
<th>CGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.74887</td>
</tr>
<tr>
<td>2</td>
<td>2.96467</td>
</tr>
<tr>
<td>3</td>
<td>2.60768</td>
</tr>
<tr>
<td>4</td>
<td>2.70183</td>
</tr>
<tr>
<td>5</td>
<td>4.82700</td>
</tr>
<tr>
<td>6</td>
<td>4.85656</td>
</tr>
<tr>
<td>7</td>
<td>3.63180</td>
</tr>
<tr>
<td>8</td>
<td>3.74165</td>
</tr>
<tr>
<td>9</td>
<td>3.37708</td>
</tr>
<tr>
<td>10</td>
<td>2.64575</td>
</tr>
<tr>
<td>11</td>
<td>3.74017</td>
</tr>
<tr>
<td>12</td>
<td>4.97950</td>
</tr>
<tr>
<td>13</td>
<td>4.61345</td>
</tr>
<tr>
<td>14</td>
<td>4.08563</td>
</tr>
<tr>
<td>15</td>
<td>4.81663</td>
</tr>
<tr>
<td>16</td>
<td>4.60435</td>
</tr>
<tr>
<td>17</td>
<td>2.91527</td>
</tr>
<tr>
<td>18</td>
<td>2.79377</td>
</tr>
<tr>
<td>19</td>
<td>2.44999</td>
</tr>
<tr>
<td>20</td>
<td>2.91298</td>
</tr>
<tr>
<td>21</td>
<td>3.70151</td>
</tr>
<tr>
<td>22</td>
<td>3.03351</td>
</tr>
<tr>
<td>23</td>
<td>3.91352</td>
</tr>
<tr>
<td>24</td>
<td>4.30116</td>
</tr>
<tr>
<td>25</td>
<td>2.12320</td>
</tr>
<tr>
<td>26</td>
<td>2.49097</td>
</tr>
<tr>
<td>27</td>
<td>1.84307</td>
</tr>
<tr>
<td>28</td>
<td>3.95871</td>
</tr>
<tr>
<td>29</td>
<td>3.70151</td>
</tr>
<tr>
<td>30</td>
<td>3.97492</td>
</tr>
<tr>
<td>31</td>
<td>3.51653</td>
</tr>
<tr>
<td>32</td>
<td>4.02449</td>
</tr>
<tr>
<td>33</td>
<td>2.68008</td>
</tr>
<tr>
<td>34</td>
<td>4.30116</td>
</tr>
<tr>
<td>35</td>
<td>2.60784</td>
</tr>
<tr>
<td>36</td>
<td>3.97492</td>
</tr>
<tr>
<td>37</td>
<td>4.60435</td>
</tr>
<tr>
<td>38</td>
<td>4.64999</td>
</tr>
<tr>
<td>39</td>
<td>4.88563</td>
</tr>
<tr>
<td>40</td>
<td>3.91352</td>
</tr>
<tr>
<td>41</td>
<td>4.13932</td>
</tr>
<tr>
<td>42</td>
<td>3.42052</td>
</tr>
<tr>
<td>43</td>
<td>1.34160</td>
</tr>
<tr>
<td>44</td>
<td>2.68328</td>
</tr>
<tr>
<td>45</td>
<td>5.47725</td>
</tr>
<tr>
<td>46</td>
<td>1.50938</td>
</tr>
<tr>
<td>47</td>
<td>3.97492</td>
</tr>
<tr>
<td>48</td>
<td>4.60435</td>
</tr>
</tbody>
</table>
```

155
The column 1: the sample number

The column 2: the bootstrap number

The column 3: means of orientations angles (equals theoretically to zero if no bias in orientation measurement).

The column 4: Bootstrapped CGP parameters

Case 3. One wants to introduce the CGP uncertainly in a model $y_A = f(CGP_1, CGP_2, CGP_m, X)$ to find the uncertainly on a vector where A are parameters estimated by a minimization method (such the least square one), X are varieties of the model (such time, temperature...) and CGP_i is the CGP computed from a given values of X (noted $X_i, i \in \{1..m\}$).

- Introduce X_i and orientation angles as describe previously.
- Compute CGP as as describe previously
- Read case2.txt file in an optimisation code (SAS, Matlab, Statistica,...) to compute models parameters with bootstrapped confidence interval.

Example:

To illustrate case 3 we will process to the $\sigma_{exp} = a/(1 + 543 \sigma_{\nu}^{-1.56})$ models elaborations.

To find the relation $(\sigma_{exp}(\sigma_{\nu}) = 52/(1 + 543 \sigma_{\nu}^{-1.56})$) between the standard deviation σ_{exp} of a truncated gaussian density probability function versus the non truncated one σ_{ν}, we have proceeded to a simulation. Gaussian random values were simulated from a non truncated one with a standard deviation of σ_{ν} (Cox and Muller transform). Then values that were not included in the interval [-90,90] were deleted. When 100,000 un-deleted values were obtained, the standard deviation σ_{exp} was computed. This step was then repeated for different values of σ_{ν} ($\sigma_{\nu} \in \{1, 500\}$). Then σ_{exp} was plotted versus σ_{ν} (see Figure A). As $\lim_{\sigma_{\nu} \to \infty} \sigma_{exp}(\sigma_{\nu}) = 52^o$ and according to the shape of data, the following model was proposed $\sigma_{exp}(\sigma_{\nu}) = c/(1 + a \sigma_{\nu}^{-1})$. By
applying the non linear least square method on data to find the a and b values, the model
\[\sigma_{\text{exp}}(\sigma_{nt}) = \frac{52}{(1 + 543 \sigma_{nt}^{-1.95})} \]
was obtained (red line in Figure A). This model line was found to fit very well with experimental data (blue circles in figure A).

Figure A: models results bootstrap data in blue and model in red

Launch program cgpsimul (cgpsimul.exe) and the number of simulation. This program generate the file cgp.txt describe previously.
for example 1000 simulations.

The file case1 is then automatically generated:

```
1.000000000000000E+000 1 2.560000000000000E+0000 2.7748873851023216E+0000
1.000000000000000E+000 2 2.520000000000000E+0000 2.9664793483826526E+0000
1.000000000000000E+000 3 2.680000000000000E+0000 2.8076809620810995E+0000
1.000000000000000E+000 4 2.480000000000000E+0000 2.7018312737217992E+0000
1.000000000000000E+000 5 3.120000000000000E+0000 4.8270073544538684E+0000
1.000000000000000E+000 6 5.600000000000000E+0000 4.0865633483405099E+0000
1.000000000000000E+000 7 7.600000000000000E+0000 3.6331804249169900E+0000
1.000000000000000E+000 8 8.000000000000000E+0000 3.741673867739414E+0000
1.000000000000000E+000 9 3.200000000000000E+0000 3.5777087639999635E+0000
1.000000000000000E+000 10 2.600000000000000E+0000 2.6457513110663506E+0000
1.000000000000000E+000 11 3.200000000000000E+0000 3.7416573867739414E+0000
1.000000000000000E+000 12 3.280000000000000E+0000 4.9799598391954930E+0000
1.000000000000000E+000 13 3.160000000000000E+0000 4.6043577328535336E+0000
1.000000000000000E+000 14 3.160000000000000E+0000 4.0865633483405099E+0000
1.000000000000000E+000 15 2.960000000000000E+0000 4.8166378315169182E+0000
1.000000000000000E+000 16 2.600000000000000E+0000 4.0000000000000000E+0000
1.000000000000000E+000 17 3.160000000000000E+0000 4.6043577328535336E+0000
1.000000000000000E+000 18 2.400000000000000E+0000 2.91547594226502E+0000
1.000000000000000E+000 19 3.040000000000000E+0000 4.6043577328535336E+0000
1.000000000000000E+000 20 2.920000000000000E+0000 3.9749213628703581E+0000
1.000000000000000E+000 21 2.960000000000000E+0000 3.7013511046643495E+0000
1.000000000000000E+000 22 3.200000000000000E+0000 3.0331501776206202E+0000
1.000000000000000E+000 23 2.920000000000000E+0000 3.9115214432158926E+0000
1.000000000000000E+000 24 2.800000000000000E+0000 4.3016263532133364E+0000
1.000000000000000E+000 25 3.400000000000000E+0000 2.1213203435564266E+0000
1.000000000000000E+000 26 2.760000000000000E+0000 2.4899791959774653E+0000
1.000000000000000E+000 27 3.160000000000000E+0000 1.6431676751549834E+0000
1.000000000000000E+000 28 2.960000000000000E+0000 3.7013511046643495E+0000
1.000000000000000E+000 29 2.760000000000000E+0000 3.8957177392358565E+0000
1.000000000000000E+000 30 3.040000000000000E+0000 4.6043577328535336E+0000
1.000000000000000E+000 31 2.800000000000000E+0000 3.9749213628703581E+0000
```

Launch then

Cgp software
and then the model can be built thanks to an appropriate software. We will treat 3 software:

SAS®, Statistica® and Matlab®.

The basic idea is to read case2.txt and computed models (in this example $\sigma_{\text{exp}}(\sigma_{n}) = c/(1 + a \sigma_{n}^b)$)

for each bootstrap values and analyses statistics distributions on parameters (in this example a,b,c)

SAS® example:

```bash
/* data input */
data b;infile 'h:\cgp\case2.txt';
input cas sim mx x;
run;

proc sort data=b;by sim;run;
proc nlin data=b outest=coef notprint noprofile maximize=10000;by sim;parms
b=-2 a=500 c=50 to 54;model x=c/(1+a*cas**b);output out=res p=p;run;

Models results (bootstrap data in black and model in red
symbol i=white;
proc gplot data=res;plot (x p)*cas/overlay;run;
```

159
/* error on coefficient a, b, c */

data coef;set coef;if _type_='FINAL';run;

proc capability data=coef noprint;var a b c;histogram a b c/normal;run;

Histograms of a, b and c are given:
Statistica®

Select import as spreadsheet select auto + as follows
and results

<table>
<thead>
<tr>
<th></th>
<th>Var1</th>
<th>Var2</th>
<th>Var3</th>
<th>Var4</th>
<th>Var5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.00004</td>
<td>0.98464</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.000036</td>
<td>0.984262</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-1.23E-6</td>
<td>0.972922</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>-0.00006</td>
<td>1.002366</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>-0.00003</td>
<td>0.994943</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>-8.58E-6</td>
<td>0.982254</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>-0.00005</td>
<td>0.987438</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>-0.00007</td>
<td>0.963512</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>-0.00011</td>
<td>1.003764</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>-9.27E-6</td>
<td>1.010458</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>-0.00001</td>
<td>0.984936</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
<td>1.903E-6</td>
<td>1.030785</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1</td>
<td>-0.00003</td>
<td>0.990318</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>1</td>
<td>0.00018</td>
<td>1.067397</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>1</td>
<td>-0.00005</td>
<td>0.991331</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>1</td>
<td>-0.00002</td>
<td>1.008557</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>1</td>
<td>-0.00001</td>
<td>0.982431</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>1</td>
<td>-0.00003</td>
<td>1.017267</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>1</td>
<td>-0.00001</td>
<td>0.984203</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>1</td>
<td>-0.00003</td>
<td>0.969270</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>1</td>
<td>-9.03E-6</td>
<td>0.989054</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>1</td>
<td>-3.08E-6</td>
<td>0.971489</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>1</td>
<td>-0.00009</td>
<td>1.000927</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>1</td>
<td>-0.00006</td>
<td>0.960449</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>1</td>
<td>-0.00004</td>
<td>0.993148</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>1</td>
<td>-1.63E-6</td>
<td>1.006659</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>1</td>
<td>0.000041</td>
<td>0.986848</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>1</td>
<td>-8.18E-6</td>
<td>0.942976</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>1</td>
<td>-0.00004</td>
<td>0.992953</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>1</td>
<td>-0.00007</td>
<td>1.008143</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>1</td>
<td>-0.00002</td>
<td>0.979524</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>1</td>
<td>-0.00001</td>
<td>0.970741</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>1</td>
<td>0.00002</td>
<td>1.004577</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>1</td>
<td>-0.00004</td>
<td>1.010359</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>1</td>
<td>-9.48E-6</td>
<td>0.954641</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>1</td>
<td>-2.60E-6</td>
<td>1.004055</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>1</td>
<td>-0.00006</td>
<td>1.018661</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>1</td>
<td>-0.00005</td>
<td>0.986726</td>
<td></td>
</tr>
</tbody>
</table>
and then one could plot CGP variation

Matlab environment

If Matlab is installed on your computer, double click on "Matlab.bat"

After a few seconds, it appears
Output, we have:

1. The file named “coef.txt” which contains the values of coefficients a, b and c, in this order, we can open it with WordPad.

2. Histograms plotting of coefficients a, b and c.

3. models results bootstrap data in black and model in red

Here the code of this application:

```matlab
% nettoyage de l'environnement Matlab
clear,close all;
%reading data case2.txt
case2=importdata('case2.txt');
```
fid = fopen('coef.txt','w');
nblignes = size(case2,1);
if = 1;
while (case2(n+1,2)>case2(n,2))
 n = n+1;
end;
sim = n;
rapp = nblignes/sim;
i=0;
for j = 1:sim
 i = 1;
 for m = 1:nblignes
 if (case2(m,2) == j)
 cas(i) = case2(m,1);
 x(i) = case2(m,4);
 i = i+1;
 end;
 end;
end;

% Function BGP(cas)=b3/(1+b1*cas^b2); x : Experimental BGP
bgp = @(b,cas) b(3)./(1 + (b(1).*((cas.^((b(2)))))));
start = [500.0; -2.0; 50];
[b,r] = nlinit(cas,x,bgp,start);
fprintf(fid,'%d\t%d\t\n',b);
for t = 1:rapp
 res(j+(t-1)*sim)=r(t);
end;
fclose(fid);

for k = 1:nblignes
 xx(k) = case2(k,4)-res(k);
end;

% Histograms plotting
test = importdata('coef.txt');
a = test(:,1); hist(a); xlabel('a');ylabel('percent');
figure, b = test(:,2); hist(b);xlabel('b');ylabel('percent');
figure, c = test(:,3); hist(c);xlabel('c');ylabel('percent');

by=case2(:,1);
le_cgp=case2(:,4);
figure,plot(by,le_cgp,by,xx);xlabel('cas');ylabel('x');
Annexe D :

La loi de Paris

Soient

- N le nombre de cycles ;
- ΔK la variation du facteur d'intensité de contrainte ;
- K, C et m des coefficients dépendant du matériau ;

on a

$$\frac{da}{dN} = C(\Delta K)^m$$

Sa dimension critique a_c est liée à la caractéristique du matériau K_{IC}, la ténacité, elle entraîne la rupture fragile de la structure :

$$K_{IC} = F \times \sigma \times \sqrt{\pi} \times a_c$$

où σ est une contrainte effective dans une direction normale à la fissure et F un facteur de forme.
Contribution du travail de la thèse

• Articles Parus :

• Articles Acceptés :

• Articles Soumis :

• Congrès avec actes :

Références Bibliographiques

[AXINTE 2009] D.A. Axinte, J. Kwong, M.C. Kong, “Workpiece surface integrity of Ti-6-4 heatresistant alloy when employing different

[BIGERELLE 2002]a M. Bigerelle, K. Anselme, B. Noel, Y. Ruderman, P. Hardouin, A. Iost, “Improvement in the morphology of Ti-based surfaces:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Reference Details</th>
</tr>
</thead>
</table>
Résumé
Le contrôle et la maîtrise de l’état de surface sont des problématiques importantes dans plusieurs domaines en Mécanique. De nombreuses études sont actuellement menées pour appréhender les interactions entre la morphologie de surface et les mécanismes physiques, chimiques ou mécaniques.
Un des aspects essentiels, qui reste encore à améliorer, est la caractérisation précise des surfaces, en fonction des domaines et des besoins, en particulier lorsqu’il s’agit d’extraire les paramètres les plus pertinents pour caractériser une surface et définir l’échelle la plus adéquate pour celle-ci. Cette problématique a fait l’objet de recherches actives car supportées par des besoins industriels forts (brillance des tôles, polissage, prothèses de hanche, endommagements des revêtements, tenue en fatigue...).
Pour tester l’efficacité d’un paramètre d’état de surface, une mesure de pertinence doit être construite et appliquée à la globalité des paramètres d’état de surface. Cette mesure de pertinence ne peut être dissociée de la fonctionnalité de surface. Le but de ce projet est de construire une méthodologie de traitement des paramètres bidimensionnelle (profilométrie) qui permet, à l’aide d’un système expert, de donner à l’utilisateur le ou les paramètres d’état de surface optimaux associés à une fonctionnalité recherchée.
Nous présentons dans ce mémoire la philosophie ainsi que la méthodologie de la construction de l’architecture de ce système que nous avons appelé « MesRug » (en référence à Mesure de Rugosité).
Nous expliquons aussi la technologie utilisée pour la réalisation de ce système, la manière de l’utiliser et l’enrichir par des nouvelles approches multi-échelles de la caractérisation de surfaces ainsi que de nouveaux paramètres de rugosité.
Nous présentons aussi quelques développements et des analyses multi-échelles (régression polynomiale, filtre gaussien, Bspline...) intégrés dans le système « MesRug » pour déterminer les caractéristiques d’un ensemble d’éléments (échelle de la mesure, paramètre, filtre, ...) permettant de discriminer au mieux une propriété recherchée, les méthodes statistiques utilisées (bootstrap, analyse discriminante, ...) pour déterminer la pertinence des paramètres de rugosité, puis les applications menées pour différentes études (interaction rugosité-usure, paramètre d’usinabilité et états de surface, ...) en utilisant cette approche.
Mots clés
Rugosité, paramètres pertinents, analyse multi-échelle, analyse statistique,...
RESUME EN FRANCAIS :

Le contrôle et la maîtrise de l'état de surface sont des problématiques importantes dans plusieurs domaines en Mécanique. De nombreuses études sont actuellement menées pour appréhender les interactions entre la morphologie de surface et les mécanismes physiques, chimiques ou mécaniques. Un des aspects essentiels, qui reste encore à améliorer, est la caractérisation précise des surfaces, en fonction des domaines et des besoins, en particulier lorsqu'il s'agit d'extraire les paramètres les plus pertinents pour caractériser une surface et définir l'échelle la plus adéquate pour celle-ci. Le but de ce projet est de construire une méthodologie de traitement des paramètres bidimensionnelle (profilométrie) qui permet, à l'aide d'un système expert, de donner à l'utilisateur le ou les paramètres d'état de surface optimaux associés à une fonctionnalité recherchée.

Nous présentons dans ce mémoire la philosophie ainsi que la méthodologie de la construction de l'architecture de ce système que nous avons appelé « MesRug ». Nous expliquons aussi la technologie utilisée pour la réalisation de ce système, la manière de l'utiliser et l'enrichir par des nouvelles approches multi-échelles de la caractérisation de surfaces ainsi que de nouveaux paramètres de rugosité. Nous présentons aussi quelques développements et des analyses multi-échelles intégrés dans le système « MesRug » pour déterminer les caractéristiques d'un ensemble d'éléments (échelle de la mesure, paramètre, filtre,...) permettant de discriminer au mieux une propriété recherchée, les méthodes statistiques utilisées pour déterminer la pertinence des paramètres de rugosité, puis les applications menées pour différentes études en utilisant cette approche.

MOTS-CLES :

Rugosité
Paramètres pertinents
Analyse statistique
Analyse multi-échelle